
10.2 ITERATIVE METHODS FOR SOLVING LINEAR SYSTEMS
As a numerical technique, Gaussian elimination is rather unusual because it is direct. That
is, a solution is obtained after a single application of Gaussian elimination. Once a “solu-
tion” has been obtained, Gaussian elimination offers no method of refinement. The lack of
refinements can be a problem because, as the previous section shows, Gaussian elimination
is sensitive to rounding error.

Numerical techniques more commonly involve an iterative method. For example, in cal-
culus you probably studied Newton’s iterative method for approximating the zeros of a dif-
ferentiable function. In this section we look at two iterative methods for approximating the
solution of a system of n linear equations in n variables.

The Jacobi Method
The first iterative technique is called the Jacobi method,after Carl Gustav Jacob Jacobi
(1804–1851). This method makes two assumptions: (1) that the system given by

has a unique solution and (2) that the coefficient matrix A has no zeros on its main diago-
nal. If any of the diagonal entries are zero, then rows or columns must be
interchanged to obtain a coefficient matrix that has nonzero entries on the main diagonal.

To begin the Jacobi method, we solve the first equation for , the second equation for
and so on, as follows.

Then we make an initial approximationof the solution,

Initial approximation

and substitute these values of into the right-hand side of the rewritten equations to obtain
the first approximation. After this procedure has been completed, we say that one iteration

xi

(x1, x2, x3, . . . , xn),

xn 5
1

ann
 (bn 2 an1x1 2 an2x2 2 . . . 2 an,n21 xn21d

x2 5
1

a22
 (b2 2 a21x1 2 a23x3 2 . . . 2 a2n xn)

x1 5
1

a11
 (b1 2 a12x2 2 a13x3 2 . . . 2 a1n xn)

x2,
x1

a11, a22, 
. . . , ann

an1x1 1 an2x2 1 . . . 1 annxn 5 bn

a21x1 1 a22x2 1 . . . 1 a2nxn 5 b2

a11x1 1 a12x2 1 . . . 1 a1nxn 5 b1
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has been performed. In the same way, the second approximation is formed by substituting
the first approximation’s x-values into the right-hand side of the rewritten equations. By
repeated iterations, we form a sequence of approximations that often convergesto the
actual solution. This procedure is illustrated in the following example.

E X A M P L E  1 Applying the Jacobi Method

Use the Jacobi method to approximate the solution of the following system of linear
equations.

−5x1 − 2x2 + 3x3 5 −1
−3x1 + 9x2 + 3x3 5 −2
−2x1 − 2x2 − 7x3 5 −3

Continue the iterations until two successive approximations are identical when rounded to
three significant digits.

Solution To begin, we write the system in the form

Since we have no idea of the actual solution, we choose

Initial approximation

as a convenient initial approximation. This means that the first approximation is

Continuing this procedure, we obtain the sequence of approximations shown in Table 10.1.

TABLE 10.1

n 0 1 2 3 4 5 6 7

x1 0.000 0.146 0.192 0.181 0.185 0.186 0.186

x2 0.000 0.222 0.203 0.328 0.332 0.329 0.331 0.331

x3 0.000 20.42320.42320.42420.42120.41620.51720.429

20.200

x3 5 2
3
7 1

2
7(0) 2

1
7(0) < 20.429.

x2 5 2
2
9 1

3
9(0) 2

1
9(0) < 20.222

x1 5 2
1
5 1

2
5(0) 2

3
5(0) 5 20.200

x3 5 0x2 5 0,x1 5 0,

x3 5 2
3
7 1

2
7 x1 2

1
7 x2 .

x2 5 2
2
9 1

3
9x1 2

1
9x3

x1 5 2
1
5 1

2
5 x2 2

3
5x3
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Because the last two columns in Table 10.1 are identical, we conclude that to three
significant digits the solution is

For the system of linear equations given in Example 1, the Jacobi method is said to
converge.That is, repeated iterations succeed in producing an approximation that is correct
to three significant digits. As is generally true for iterative methods, greater accuracy would
require more iterations.

The Gauss-Seidel Method
We now look at a modification of the Jacobi method called the Gauss-Seidel method,
named after Carl Friedrich Gauss (1777–1855) and Philipp L. Seidel (1821–1896). This
modification is no more difficult to use than the Jacobi method, and it often requires fewer
iterations to produce the same degree of accuracy.

With the Jacobi method, the values of obtained in the nth approximation remain
unchanged until the entire th approximation has been calculated. With the Gauss-
Seidel method, on the other hand, we use the new values of each as soon as they are
known. That is, once we have determined from the first equation, its value is then used
in the second equation to obtain the new Similarly, the new and are used in 
the third equation to obtain the new and so on. This procedure is demonstrated in
Example 2.

E X A M P L E  2 Applying the Gauss-Seidel Method

Use the Gauss-Seidel iteration method to approximate the solution to the system of 
equations given in Example 1.

Solution The first computation is identical to that given in Example 1. That is, using 
as the initial approximation, we obtain the following new value for 

Now that we have a new value for , however, we use it to compute a new value for 
That is,

Similarly, we use and to compute a new value for 

Thus the first approximation is , and Continued
iterations produce the sequence of approximations shown in Table 10.2.

x3 5 20.508.x2 5 0.156,x1 5 20.200

x3 5 2
3
7 1

2
7(20.200) 2

1
7(0.156) < 20.508

x3.x2 5 0.156x1 5 20.200

x2 5
2
9 1

3
9(20.200) 2

1
9(0) < 0.156.

x2.x1

x1 5 2
1
5 1

2
5(0) 2

3
5(0) 5 20.200

x1.(0, 0, 0)
(x1, x2, x3) 5

x3,
x2x1x2.

x1

xi

(n 1 1)
xi

x3 5 20.423.x2 5 0.331,x1 5 0.186,
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TABLE 10.2

n 0 1 2 3 4 5

x1 0.000 0.167 0.191 0.186 0.186

x2 0.000 0.156 0.334 0.333 0.331 0.331

x3 0.000

Note that after only five iterations of the Gauss-Seidel method, we achieved the same
accuracy as was obtained with seven iterations of the Jacobi method in Example 1.

Neither of the iterative methods presented in this section always converges. That is, it is
possible to apply the Jacobi method or the Gauss-Seidel method to a system of linear equa-
tions and obtain a divergent sequence of approximations. In such cases, we say that the
method diverges.

E X A M P L E  3 An Example of Divergence

Apply the Jacobi method to the system

7x1 − 5x2 5 −4
7x1 − 5x2 5 −6,

using the initial approximation and show that the method diverges.

Solution As usual, we begin by rewriting the given system in the form

x1 5 −4 + 5x2

x2 5 −6 + 7x1.

Then the initial approximation (0, 0) produces

x1 5 −4 + 5(0) 5 −4
x2 5 −6 + 7(0) 5 −6

as the first approximation. Repeated iterations produce the sequence of approximations
shown in Table 10.3.

TABLE 10.3

n 0 1 2 3 4 5 6 7

x1 0

x2 0 2300,124242,87428,57421,244224423426

2214,374242,87426,12421,244217423424

(x1, x2) 5 (0, 0),

20.42320.42320.42220.42920.508

20.200
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For this particular system of linear equations we can determine that the actual solution is
and Thus we see from Table 10.3 that the approximations given by the

Jacobi method become progressively worse instead of better, and we conclude that the
method diverges.

The problem of divergence in Example 3 is not resolved by using the Gauss-Seidel
method rather than the Jacobi method. In fact, for this particular system the Gauss-Seidel
method diverges more rapidly, as shown in Table 10.4.

TABLE 10.4

n 0 1 2 3 4 5

x1 0

x2 0

With an initial approximation of neither the Jacobi method nor the
Gauss-Seidel method converges to the solution of the system of linear equations given in
Example 3. We now look at a special type of coefficient matrix A, called a strictly diago-
nally dominant matrix, for which we are guaranteed that both methods will converge.

E X A M P L E  4 Strictly Diagonally Dominant Matrices

Which of the following systems of linear equations has a strictly diagonally dominant 
coefficient matrix?

(a) 3x1 − 5x2 5 −4
2x1 + 5x2 5 −2

(b) 4x1 + 2x2 − 5x3 5 −1
4x1 + 2x2 + 2x3 5 −4
3x1 − 5x2 + 5x3 5 −3

(x1, x2) 5 (0, 0),

252,521,87421,500,624242,87421,224234

27,503,1242214,37426,124217424

x2 5 1.x1 5 1
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Definition of Strictly
Diagonally Dominant
Matrix

An matrix A is strictly diagonally dominant if the absolute value of each entry
on the main diagonal is greater than the sum of the absolute values of the other entries
in the same row. That is,

|ann| > |an1| 1 |an2| 1 . . . 1 |an,n21|.

|a22| > |a21| 1 |a23| 1 . . . 1 |a2n|
|a11| > |a12| 1 |a13| 1 . . . 1 |a1n|

n 3 n

. 
. 

.
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Theorem 10.1
Convergence of
the Jacobi and
Gauss-Seidel Methods

If A is strictly diagonally dominant, then the system of linear equations given by 
has a unique solution to which the Jacobi method and the Gauss-Seidel method will con-
verge for any initial approximation.

Ax 5 b

Solution (a) The coefficient matrix

is strictly diagonally dominant because and 
(b) The coefficient matrix

is not strictly diagonally dominant because the entries in the second and third rows do
not conform to the definition. For instance, in the second row a21 5 1, a22 5 0, a23 5 2,
and it is not true that |a22| > |a21| 1 |a23|. If we interchange the second and third rows
in the original system of linear equations, however, then the coefficient matrix becomes

and this matrix is strictly diagonally dominant.

The following theorem, which we list without proof, states that strict diagonal dominance
is sufficient for the convergence of either the Jacobi method or the Gauss-Seidel method.

In Example 3 we looked at a system of linear equations for which the Jacobi and Gauss-
Seidel methods diverged. In the following example we see that by interchanging the rows
of the system given in Example 3, we can obtain a coefficient matrix that is strictly diago-
nally dominant. After this interchange, we are assured of convergence.

E X A M P L E  5 Interchanging Rows to Obtain Convergence

Interchange the rows of the system

7x1 − 5x2 5 −4
7x1 − 5x2 5 −6

to obtain one with a strictly diagonally dominant coefficient matrix. Then apply the Gauss-
Seidel method to approximate the solution to four significant digits.

A9 5 3
4

3

1

2

25

0

21

1

24,

A 5 3
4

1

3

2

0

25

21

2

14
|5|  > |2|.|3| > |21|

A 5 33

2

21
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Solution We begin by interchanging the two rows of the given system to obtain

7x1 − 5x2 5 −6
7x1 − 5x2 5 −4.

Note that the coefficient matrix of this system is strictly diagonally dominant. Then we
solve for and as follows.

Using the initial approximation we obtain the sequence of approximations
shown in Table 10.5.

TABLE 10.5

n 0 1 2 3 4 5

x1 0.0000 0.8571 0.9959 0.9999 1.000 1.000

x2 0.0000 0.9714 0.9992 1.000 1.000 1.000

Thus we conclude that the solution is and 

Do not conclude from Theorem 10.1 that strict diagonal dominance is a necessary con-
dition for convergence of the Jacobi or Gauss-Seidel methods. For instance, the coefficient
matrix of the system

−4x1 + 5x2 5 1
−4x1 + 2x2 5 3

is not a strictly diagonally dominant matrix, and yet both methods converge to the solution
and when we use an initial approximation of (See 

Exercise 21.)
(x1, x2) 5 (0, 0).x2 5 1x1 5 1

x2 5 1.x1 5 1

(x1, x2) 5 (0, 0),

x2 5
4
5 1

1
5x1

x1 5
6
7 1

1
7x2

x2x1
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In Exercises 1– 4, apply the Jacobi method to the given system of
linear equations, using the initial approximation 
(0, 0, . . . , 0). Continue performing iterations until two successive
approximations are identical when rounded to three significant digits.

1. 2.

1. 2.

3. 4.

3. 4.

3. 4.

5. Apply the Gauss-Seidel method to Exercise 1.

6. Apply the Gauss-Seidel method to Exercise 2.

7. Apply the Gauss-Seidel method to Exercise 3.

8. Apply the Gauss-Seidel method to Exercise 4.

In Exercises 9–12, show that the Gauss-Seidel method diverges for
the given system using the initial approximation 

9. 10.

9.

11. 12.

11. 12.

11. 12.

In Exercises 13–16, determine whether the given matrix is strictly
diagonally dominant.

13. 14.

15. 16.

17. Interchange the rows of the system of linear equations in
Exercise 9 to obtain a system with a strictly diagonally domi-
nant coefficient matrix. Then apply the Gauss-Seidel method
to approximate the solution to two significant digits.

18. Interchange the rows of the system of linear equations in
Exercise 10 to obtain a system with a strictly diagonally dom-
inant coefficient matrix. Then apply the Gauss-Seidel method
to approximate the solution to two significant digits.

3
7

1

0

5

24

2

21

1

2343
12

2

0

6

23

6

0

2

134
321

0

22

1432

3

1
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 x2 1 2x3 5 1 3x1 2 3x2 1 10x3 5 13

 3x1 2 3x2 2 2x3 5 5 3x1 1 3x2 2 10x3 5 29

 x1 1 3x2 2 2x3 5 5 2x1 2 3x2 2 10x3 5 27

3x1 2 2x2 5 22x1 1 2x2 5 23

2x1 1 4x2 5 12x1 2 2x2 5 21

s0, 0, . . . , 0d.
sx1, x2, . . . , xnd 5

3x1 2 7x2 1 4x3 5 112x1 1 3x2 2 3x3 5 26

4x1 2 7x2 1 2x3 5 222x1 2 3x2 1 3x3 5 22

4x1 1 7x2 1 2x3 5 272x1 2 3x2 1 3x3 5 22

23x1 2 5x2 5 213x1 1 4x2 5 5

24x1 1 2x2 5 263x1 2 4x2 5 2

sx1, x2, . . . , xnd 5

19. Interchange the rows of the system of linear equations in
Exercise 11 to obtain a system with a strictly diagonally dom-
inant coefficient matrix. Then apply the Gauss-Seidel method
to approximate the solution to two significant digits.

20. Interchange the rows of the system of linear equations in
Exercise 12 to obtain a system with a strictly diagonally dom-
inant coefficient matrix. Then apply the Gauss-Seidel method
to approximate the solution to two significant digits.

In Exercises 21 and 22, the coefficient matrix of the given system
of linear equations is not strictly diagonally dominant. Show that
the Jacobi and Gauss-Seidel methods converge using an initial ap-
proximation of .

21. 22.

21. 22.

22.

In Exercises 23 and 24, write a computer program that applies the
Gauss-Siedel method to solve the given system of linear equations.

23.

23.

23.

23.

23.

23.

23.

23.

24.

24.

24.

24.

24.

24.

24.

24. 4x1 2 4x2 2 4x3 2 4x4 2 4x5 2 4x6 2 2x7 1 4x8 5 32

4x1 2 4x2 2 4x3 2 4x4 2 4x5 22x6 1 4x7 2 4x8 5 10

4x1 2 4x2 2 4x3 2 4x4 2 2x5 1 4x6 2 4x7 2 4x8 5 16

4x1 2 4x2 2 4x3 2 2x4 1 4x5 2 4x6 2 4x7 2 4x8 5 26

4x1 2 4x2 2 2x3 1 4x4 2 4x5 2 4x6 2 4x7 2 4x8 5 14

4x1 2 2x2 1 4x3 2 4x4 2 4x5 2 4x6 2 4x7 2 4x8 5 14

2x1 1 4x2 2 4x3 2 4x4 2 4x5 2 4x6 2 4x7 2 4x8 5 18

4x1 2 4x2 2 4x3 2 4x4 2 4x5 2 4x6 2 4x7 2 4x8 5 18

4x1 1 6x2 2 2x3 1 2x4 2 6x5 1 5x6 2 4x7 1 5x8 5 122

4x1 1 6x2 2 2x3 1 2x4 2 6x5 1 5x6 1 4x7 2 5x8 5 122

4x1 1 6x2 12x3 2 5x4 2 6x5 1 5x6 1 4x7 2 5x8 5 212

4x1 1 6x2 12x3 2 5x4 1 6x5 2 5x6 1 4x7 2 5x8 5 212

4x1 1 2x2 1 5x3 1 5x4 2 6x5 1 5x6 2 4x7 2 5x8 5 120

4x1 1 6x2 1 5x3 1 5x4 2 6x5 1 5x6 1 4x7 1 5x8 5 125

4x1 1 6x2 2 2x3 1 5x4 2 6x5 1 5x6 1 4x7 1 5x8 5 126

4x1 1 6x2 2 2x3 1 5x4 1 6x5 1 5x6 1 4x7 1 5x8 5 213

3x1 2 2x2 1 4x3 5 5

4x1 2 3x2 2 2x3 5 724x1 1 2x2 5 3

4x1 1 2x2 2 2x3 5 024x1 1 5x2 5 1

sx1, x2, . . . , xnd 5 s0, 0, . . . , 0d

C


