A FIRST ORDER DIVIDED DIFFERENCE

For a given function f(x) and two distinct points xg
and x1, define

f(z1) — f(2o)
x1 — TQ
This is called a first order divided difference of f(x).

flxo, z1] =

By the Mean-value theorem,

f(z1) = f(zo) = f'(c) (x1 — o)

for some ¢ between xg and x1. Thus

f[w()) 331] — f,(C)
and the divided difference in very much like the deriva-

tive, especially if zg and x1 are quite close together.
In fact,

f (xl J2r xo) ~ flzo, z1]

Is quite an accurate approximation of the derivative
(see §7.4).



SECOND ORDER DIVIDED DIFFERENCES

Given three distinct points xqg, x1, and x5, define

flz1, z2] — flzo, z1]
Ty — TQ

f[x07 L1, $2] —

This is called the second order divided difference of

f(z).

By a fairly complicated argument, we can show

fleo, o1, 22] = 51"(c)

for some c intermediate to xg, x1, and x5. In fact, as
we investigate in §7.4,

" (z1) = 2f[zo, z1, 2]

in the case the nodes are evenly spaced,

r1 — X9 =T —I]



EXAMPLE

Consider the table
r | 1 1.1 1.2 1.3 1.4

Cos T ‘ 54030 .45360 .36236 .26750 .16997

Let xg =1, x1 = 1.1, and o = 1.2. Then
45360 — .54030

: — — —.86700
.36236 — .45360
zo] = — —.91240
flz1, =] 11
_ flx1,x2] = flzo, z1]
f[x()? 1, $2] — Ty — T
_ —.91240 — (—.86700) 29700
1.2—1.0

For comparison,
, :131—|—5130)
(25
1
5f// (x1) = —cos(1l.1) = —.22680

—sin (1.05) = —.86742



GENERAL DIVIDED DIFFERENCES

Given n + 1 distinct points xg, ..., xn, with n > 2,
define

flz1, ..y zn] — flzo, ..o, Tp_1]
Tn — TQ

f[x()? 7ajn] —

This is a recursive definition of the ntM-order divided
difference of f(x), using divided differences of order
n. lts relation to the derivative is as follows:

1
f[m()? sy xn] — Jf(n)(c)

for some c intermediate to the points {xq, ..., zn}. Let
I denote the interval

[ = [mln {x(), ey wn} , MaxXx {330, ceey wn}]

Then ¢ € I, and the above result is based on the
assumption that f(x) is n-times continuously differ-
entiable on the interval 1.



EXAMPLE

The following table gives divided differences for the
data in

r | 1 1.1 1.2 1.3 1.4
cosz | .54030 .45360 .36236 .26750 .16997

For the column headings, we use

Dkf(xz) = flzi; - x’i—l—k]

v; f(z;) Df(z;) D?*f(z;) D3f(xz;) D*f(z;)

1.1 .45360 -.9124  -.1810 .1583
1.2 .36236 -.9486  -.1335

1.3 .26750 -.9753

1.4 .16997

S~ WD R O~

These were computed using the recursive definition

f[ZIS‘]_, 7wn] o f[w()) ey wn—l]
Ln — L)

flwo, .-y n] =

1.0 .54030 -.8670 -.2270 .1533 0125



ORDER OF THE NODES

Looking at f[xq,x1], we have

f(21) — f(x0) _ f(zo) — f(z1)

L1 — X0 Lo — 21

= flz1, z0]

flxo, z1] =

The order of xg and x1 does not matter. Looking at

flz1, z2] — flzo, z1]

flzo, 1, z2] =
To — IQ
we can expand it to get
o _ f(zo)
flzo, z1, z2] (70 — 1) (0 — 7o)
N f(z1) N f(z2)

(1 —z0) (x1 —x2) (22 — T0) (T2 — 1)

With this formula, we can show that the order of the
arguments xq, 1, x2> does not matter in the final value
of flxg, 1, x2] we obtain. Mathematically,

f[w()a L1, w2] — f[wioa Lgqs xig]

for any permutation (%g, %1, 72) of (0,1, 2).



We can show in general that the value of f[xq, ..., xn]

is independent of the order of the arguments {x, ..., zn },
even though the intermediate steps in its calculations
using

f[$17 73371] _ f[$07 "t xn—l]
Ln — I(Q

flxo, ..., xn] =

are order dependent.

We can show

flzo, .-y zn] = flzig, - x4,

for any permutation (ig, 1, ...,4n) of (0,1,...,n).



COINCIDENT NODES

What happens when some of the nodes {z,...,zn}
are not distinct. Begin by investigating what happens
when they all come together as a single point xg.

For first order divided differences, we have

f(z1) — f(zo)

L1 — 20

Jim flzo,z1] = lim

= f'(zo)

We extend the definition of f[xg,x1] to coincident
nodes using

flzo, o] = f'(z0o)



For second order divided differences, recall

flzo, z1, z2] = %f”(c)

with c intermediate to xqg, x1, and x».

Then as 1 — xg and x» — xg, we must also have
that ¢ — xg. Therefore,

. 1.,
M, flzo, 21, 22] = S (20)

L2—X(

We therefore define

1
flzo, zo, o] = Ef”(flfo)



For the case of general f[zq, ..., xn], recall that

1
Flos -+ 2] = —F"(c)
n!
for some c intermediate to {xg, ..., xn}. Then
1
im  flzo, ... zn] = — ) (20)
{z1,...,xn}—xq n!
and we define

1
f[\w(')) 7w0,.| — Jf(n)(w())

n—+1 ’Eirmes

What do we do when only some of the nodes are
coincident. This too can be dealt with, although we
do so here only by examples.

flz1, 1] — flzo, x1]

flxo, z1,21] =
T1 — TQ
f'(x1) — flzo, x1]
- x1 — T

The recursion formula can be used in general in this
way to allow all possible combinations of possibly co-
incident nodes.



LAGRANGE'S FORMULA FOR
THE INTERPOLATION POLYNOMIAL

Recall the general interpolation problem: find a poly-
nomial Py, (x) for which

deg(Pn) <n
Pn(xz):ym 7::0717"'777’

with given data points

(330, yO) ’ (33]_, yl) SR (w’rh yn)
and with {xg, ..., zn} distinct points.

In §5.1, we gave the solution as Lagrange’s formula

Pp(z) = yoLo(z) + y1L1(z) + - - + ynLn(z)

with {Lg(x), ..., Ln(x)} the Lagrange basis polynomi-
als. Each L; is of degree n and it satisfies

for:=0,1,...,n.



THE NEWTON DIVIDED DIFFERENCE FORM
OF THE INTERPOLATION POLYNOMIAL

Let the data values for the problem

deg(Pn) <n
Pn(wz):yza ’I::O,].,“',TL

be generated from a function f(z):

Yq :f(azz-), i:O,l,...,n
Using the divided differences

f[ajo7 xl]? f[ajO? x17x2]7 "'7f[$07 "’7$n]

we can write the interpolation polynomials

Pi(z), Py(x), ..., Ph(x)

in a way that is simple to compute.

Pi(z) = f(zo) + flzo, z1] (x — x0)
P(z) = f(zo) + flzo, 1] (z — z0)
+flzo, 21, 22] (2 — 20) (2 — 21)
= Pi(z) + flzo, 1, z2] (x — o) (z — =1)




For the case of the general problem

deg(Pn) <n

Pn(xz):ym 7::0717"'777’

we have

Po(z) = f(zo) + flzo, 1] (z — z0)

+f
+f

+ f]

x0, x1, z2] (z — xo) (z — x1)
z0, T1, T2, 23| (z — @) (= — #1) (z — z2)

[ LQy -+ wn] (:13 - CIZ()) T (:13 - wn—l)

From this we have the recursion relation

Po(z) = Pp—1(2) + flzo, - 2n] (€ — 20) - - - (2 — 2p—1)

in which P,,_1(zx) interpolates f(x) at the points in

{xg, .- s Tp_1}-



Example: Recall the table

f(z;) Df(z;) D?*f(z;) D3f(z;) D*f(=;)

T X

0 1.0 .54030 -.8670 -.2270 1533 0125
1 1.1 .45360 -.9124 -.1810 .1583

2 1.2 .36236 -.9486 -.1335

3 1.3 .26750 -.9753

4 1.4 .16997

with D¥f(x;) = flzs, ..., zi4k], k=1,2,3,4. Then

Pi(x)
P>(x)
P3(x)
Py(x)

Using this

5403 — .8670 (z — 1)

Py(z) — 2270 (z — 1) (z — 1.1)

Po(z) + 1533 (z — 1) (z — 1.1) (z — 1.2)
P3(x)

+.0125(z — 1) (z — 1.1) (z — 1.2) (z — 1.3)

table and these formulas, we have the fol-

lowing table of interpolants for the value x = 1.05.
The true value is cos(1.05) = .49757105.

n 1 2 3 4
Pn(1.05) | .49695 49752 49758 49757
Error | 6.20E—4 5.00E—5 —1.00E-5 0.0




EVALUATION OF THE DIVIDED DIFFERENCE
INTERPOLATION POLYNOMIAL

Let

di = flzo,x1]
d2 — f[CIZO,ZC]_,ZCQ]

dn = flzo,..., n]
Then the formula

Pn(z) = f(zo) + flzo, z1] (z — 20)
—|_f_$07 I, $2] (ZE T 370) (QB T 33]_)
+flxo, £1, 2, 23] (x — z0) (z — 1) (z — 2)
_I_ . ..
+flzo, -y zn] (x — 20) - - (. — Tp—1)

can be written as

Po(x) = f(xg)+(x—20)(d1+ (x —x1)(do+ -
+(z —zp_2) (dp—1+(x —xp_1)dn)---)

Thus we have a nested polynomial evaluation, and
this is quite efficient in computational cost.



