A FIRST ORDER DIVIDED DIFFERENCE

For a given function f(x) and two distinct points x_0 and x_1 , define

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

This is called a <u>first order divided difference</u> of f(x).

By the Mean-value theorem,

$$f(x_1) - f(x_0) = f'(c)(x_1 - x_0)$$

for some c between x_0 and x_1 . Thus

$$f[x_0, x_1] = f'(c)$$

and the divided difference in very much like the derivative, especially if x_0 and x_1 are quite close together. In fact,

$$f'\left(\frac{x_1+x_0}{2}\right) \approx f[x_0,x_1]$$

is quite an accurate approximation of the derivative (see §7.4).

SECOND ORDER DIVIDED DIFFERENCES

Given three distinct points x_0 , x_1 , and x_2 , define

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

This is called the second order divided difference of f(x).

By a fairly complicated argument, we can show

$$f[x_0, x_1, x_2] = \frac{1}{2}f''(c)$$

for some c intermediate to x_0 , x_1 , and x_2 . In fact, as we investigate in $\S 7.4$,

$$f''(x_1) \approx 2f[x_0, x_1, x_2]$$

in the case the nodes are evenly spaced,

$$x_1 - x_0 = x_2 - x_1$$

EXAMPLE

Consider the table

Let
$$x_0 = 1$$
, $x_1 = 1.1$, and $x_2 = 1.2$. Then

$$f[x_0, x_1] = \frac{.45360 - .54030}{1.1 - 1} = -.86700$$

 $f[x_1, x_2] = \frac{.36236 - .45360}{1.1 - 1} = -.91240$

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

$$= \frac{-.91240 - (-.86700)}{1.2 - 1.0} = -.22700$$

For comparison,

$$f'\left(\frac{x_1+x_0}{2}\right) = -\sin(1.05) = -.86742$$

 $\frac{1}{2}f''(x_1) = -\cos(1.1) = -.22680$

GENERAL DIVIDED DIFFERENCES

Given n+1 distinct points $x_0,...,x_n$, with $n\geq 2$, define

$$f[x_0, ..., x_n] = \frac{f[x_1, ..., x_n] - f[x_0, ..., x_{n-1}]}{x_n - x_0}$$

This is a recursive definition of the n^{th} -order divided difference of f(x), using divided differences of order n. Its relation to the derivative is as follows:

$$f[x_0, ..., x_n] = \frac{1}{n!} f^{(n)}(c)$$

for some c intermediate to the points $\{x_0,...,x_n\}$. Let I denote the interval

$$I = [\min\{x_0, ..., x_n\}, \max\{x_0, ..., x_n\}]$$

Then $c \in I$, and the above result is based on the assumption that f(x) is n-times continuously differentiable on the interval I.

EXAMPLE

The following table gives divided differences for the data in

For the column headings, we use

$$D^k f(x_i) = f[x_i, ..., x_{i+k}]$$

i	x_i	$f(x_i)$	$Df(x_i)$	$D^2f(x_i)$	$D^3f(x_i)$	$D^4f(x_i)$
0	1.0	.54030	8670	2270	.1533	.0125
1	1.1	.45360	9124	1810	.1583	
2	1.2	.36236	9486	1335		
3	1.3	.26750	9753			
4	1.4	.16997				

These were computed using the recursive definition

$$f[x_0, ..., x_n] = \frac{f[x_1, ..., x_n] - f[x_0, ..., x_{n-1}]}{x_n - x_0}$$

ORDER OF THE NODES

Looking at $f[x_0, x_1]$, we have

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{f(x_0) - f(x_1)}{x_0 - x_1} = f[x_1, x_0]$$

The order of x_0 and x_1 does not matter. Looking at

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$

we can expand it to get

$$f[x_0, x_1, x_2] = \frac{f(x_0)}{(x_0 - x_1)(x_0 - x_2)} + \frac{f(x_1)}{(x_1 - x_0)(x_1 - x_2)} + \frac{f(x_2)}{(x_2 - x_0)(x_2 - x_1)}$$

With this formula, we can show that the order of the arguments x_0, x_1, x_2 does not matter in the final value of $f[x_0, x_1, x_2]$ we obtain. Mathematically,

$$f[x_0, x_1, x_2] = f[x_{i_0}, x_{i_1}, x_{i_2}]$$

for any permutation (i_0, i_1, i_2) of (0, 1, 2).

We can show in general that the value of $f[x_0, ..., x_n]$ is independent of the order of the arguments $\{x_0, ..., x_n\}$, even though the intermediate steps in its calculations using

$$f[x_0, ..., x_n] = \frac{f[x_1, ..., x_n] - f[x_0, ..., x_{n-1}]}{x_n - x_0}$$

are order dependent.

We can show

$$f[x_0, ..., x_n] = f[x_{i_0}, ..., x_{i_n}]$$

for any permutation $(i_0, i_1, ..., i_n)$ of (0, 1, ..., n).

COINCIDENT NODES

What happens when some of the nodes $\{x_0, ..., x_n\}$ are not distinct. Begin by investigating what happens when they all come together as a single point x_0 .

For first order divided differences, we have

$$\lim_{x_1 \to x_0} f[x_0, x_1] = \lim_{x_1 \to x_0} \frac{f(x_1) - f(x_0)}{x_1 - x_0} = f'(x_0)$$

We extend the definition of $f[x_0, x_1]$ to coincident nodes using

$$f[x_0, x_0] = f'(x_0)$$

For second order divided differences, recall

$$f[x_0, x_1, x_2] = \frac{1}{2}f''(c)$$

with c intermediate to x_0 , x_1 , and x_2 .

Then as $x_1 \to x_0$ and $x_2 \to x_0$, we must also have that $c \to x_0$. Therefore,

$$\lim_{\substack{x_1 \to x_0 \\ x_2 \to x_0}} f[x_0, x_1, x_2] = \frac{1}{2} f''(x_0)$$

We therefore define

$$f[x_0, x_0, x_0] = \frac{1}{2}f''(x_0)$$

For the case of general $f[x_0,...,x_n]$, recall that

$$f[x_0, ..., x_n] = \frac{1}{n!} f^{(n)}(c)$$

for some c intermediate to $\{x_0, ..., x_n\}$. Then

$$\lim_{\{x_1,...,x_n\}\to x_0} f[x_0,...,x_n] = \frac{1}{n!} f^{(n)}(x_0)$$

and we define

$$f[\underbrace{x_0, ..., x_0}_{n+1 \text{ times}}] = \frac{1}{n!} f^{(n)}(x_0)$$

What do we do when only some of the nodes are coincident. This too can be dealt with, although we do so here only by examples.

$$f[x_0, x_1, x_1] = \frac{f[x_1, x_1] - f[x_0, x_1]}{x_1 - x_0}$$
$$= \frac{f'(x_1) - f[x_0, x_1]}{x_1 - x_0}$$

The recursion formula can be used in general in this way to allow all possible combinations of possibly coincident nodes.

LAGRANGE'S FORMULA FOR THE INTERPOLATION POLYNOMIAL

Recall the general interpolation problem: find a polynomial $P_n(x)$ for which

$$\deg(P_n) \leq n \ P_n(x_i) = y_i, \qquad i = 0, 1, \cdots, n$$

with given data points

$$(x_0, y_0), (x_1, y_1), \cdots, (x_n, y_n)$$

and with $\{x_0, ..., x_n\}$ distinct points.

In $\S 5.1$, we gave the solution as Lagrange's formula

$$P_n(x) = y_0 L_0(x) + y_1 L_1(x) + \dots + y_n L_n(x)$$

with $\{L_0(x), ..., L_n(x)\}$ the Lagrange basis polynomials. Each L_j is of degree n and it satisfies

$$L_j(x_i) = \begin{cases} 1, & j = i \\ 0, & j \neq i \end{cases}$$

for i = 0, 1, ..., n.

THE NEWTON DIVIDED DIFFERENCE FORM OF THE INTERPOLATION POLYNOMIAL

Let the data values for the problem

$$\deg(P_n) \le n$$

$$P_n(x_i) = y_i, \quad i = 0, 1, \dots, n$$

be generated from a function f(x):

$$y_i = f(x_i), \qquad i = 0, 1, ..., n$$

Using the divided differences

$$f[x_0, x_1], f[x_0, x_1, x_2], ..., f[x_0, ..., x_n]$$

we can write the interpolation polynomials

$$P_1(x), P_2(x), ..., P_n(x)$$

in a way that is simple to compute.

$$P_{1}(x) = f(x_{0}) + f[x_{0}, x_{1}] (x - x_{0})$$

$$P_{2}(x) = f(x_{0}) + f[x_{0}, x_{1}] (x - x_{0})$$

$$+ f[x_{0}, x_{1}, x_{2}] (x - x_{0}) (x - x_{1})$$

$$= P_{1}(x) + f[x_{0}, x_{1}, x_{2}] (x - x_{0}) (x - x_{1})$$

For the case of the general problem

$$\deg(P_n) \le n$$

$$P_n(x_i) = y_i, \quad i = 0, 1, \cdots, n$$

we have

$$P_{n}(x) = f(x_{0}) + f[x_{0}, x_{1}](x - x_{0}) + f[x_{0}, x_{1}, x_{2}](x - x_{0})(x - x_{1}) + f[x_{0}, x_{1}, x_{2}, x_{3}](x - x_{0})(x - x_{1})(x - x_{2}) + \cdots + f[x_{0}, ..., x_{n}](x - x_{0}) \cdots (x - x_{n-1})$$

From this we have the recursion relation

$$P_n(x) = P_{n-1}(x) + f[x_0, ..., x_n](x - x_0) \cdots (x - x_{n-1})$$

in which $P_{n-1}(x)$ interpolates f(x) at the points in $\{x_0,...,x_{n-1}\}.$

Example: Recall the table

with
$$D^k f(x_i) = f[x_i, ..., x_{i+k}], \quad k = 1, 2, 3, 4$$
. Then

$$P_{1}(x) = .5403 - .8670 (x - 1)$$

$$P_{2}(x) = P_{1}(x) - .2270 (x - 1) (x - 1.1)$$

$$P_{3}(x) = P_{2}(x) + .1533 (x - 1) (x - 1.1) (x - 1.2)$$

$$P_{4}(x) = P_{3}(x)$$

$$+ .0125 (x - 1) (x - 1.1) (x - 1.2) (x - 1.3)$$

Using this table and these formulas, we have the following table of interpolants for the value x=1.05. The true value is $\cos(1.05)=.49757105$.

n	1	2	3	4
$P_n(1.05)$.49695	.49752	.49758	.49757
\overline{Error}	6.20E-4	5.00E-5	-1.00E-5	0.0

EVALUATION OF THE DIVIDED DIFFERENCE INTERPOLATION POLYNOMIAL

Let

$$d_1 = f[x_0, x_1] d_2 = f[x_0, x_1, x_2] \vdots d_n = f[x_0, ..., x_n]$$

Then the formula

$$P_{n}(x) = f(x_{0}) + f[x_{0}, x_{1}](x - x_{0}) + f[x_{0}, x_{1}, x_{2}](x - x_{0})(x - x_{1}) + f[x_{0}, x_{1}, x_{2}, x_{3}](x - x_{0})(x - x_{1})(x - x_{2}) + \cdots + f[x_{0}, ..., x_{n}](x - x_{0}) \cdots (x - x_{n-1})$$

can be written as

$$P_n(x) = f(x_0) + (x - x_0) (d_1 + (x - x_1) (d_2 + \cdots + (x - x_{n-2}) (d_{n-1} + (x - x_{n-1}) d_n) \cdots)$$

Thus we have a nested polynomial evaluation, and this is quite efficient in computational cost.