
Chapter 4

DETERMINANTS

DEFINITION 4.0.1 If A =

�
a11 a12
a21 a22

�
, we de�ne the determinant of

A, (also denoted by detA,) to be the scalar

detA = a11a22 � a12a21:

The notation

���� a11 a12
a21 a22

���� is also used for the determinant of A.

If A is a real matrix, there is a geometrical interpretation of detA. If
P = (x1; y1) and Q = (x2; y2) are points in the plane, forming a triangle

with the origin O = (0; 0), then apart from sign, 1

2

���� x1 y1
x2 y2

���� is the area

of the triangle OPQ. For, using polar coordinates, let x1 = r1 cos �1 and

y1 = r1 sin �1, where r1 = OP and �1 is the angle made by the ray
-
OP with

the positive x{axis. Then triangle OPQ has area 1

2
OP � OQ sin�, where

� = \POQ. If triangle OPQ has anti{clockwise orientation, then the ray
-
OQ makes angle �2 = �1 + � with the positive x{axis. (See Figure 4.1.)

Also x2 = r2 cos �2 and y2 = r2 sin �2. Hence

AreaOPQ =
1

2
OP �OQ sin�

=
1

2
OP �OQ sin (�2 � �1)

=
1

2
OP �OQ(sin �2 cos �1 � cos �2 sin �1)

=
1

2
(OQ sin �2 �OP cos �1 �OQ cos �2 �OP sin �1)
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Figure 4.1: Area of triangle OPQ.

=
1

2
(y2x1 � x2y1)

=
1

2

���� x1 y1
x2 y2

���� :
Similarly, if triangle OPQ has clockwise orientation, then its area equals

�1
2

���� x1 y1
x2 y2

����.
For a general triangle P1P2P3, with Pi = (xi; yi); i = 1; 2; 3, we can

take P1 as the origin. Then the above formula gives

1

2

���� x2 � x1 y2 � y1
x3 � x1 y3 � y1

���� or �
1

2

���� x2 � x1 y2 � y1
x3 � x1 y3 � y1

���� ;
according as vertices P1P2P3 are anti{clockwise or clockwise oriented.

We now give a recursive de�nition of the determinant of an n�n matrix
A = [aij ]; n � 3.

DEFINITION 4.0.2 (Minor) Let Mij(A) (or simply Mij if there is no
ambiguity) denote the determinant of the (n� 1)� (n� 1) submatrix of A
formed by deleting the i{th row and j{th column of A. (Mij(A) is called
the (i; j) minor of A.)

Assume that the determinant function has been de�ned for matrices of
size (n�1)�(n�1). Then detA is de�ned by the so{called �rst{row Laplace
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expansion:

detA = a11M11(A)� a12M12(A) + : : :+ (�1)1+nM1n(A)

=
nX

j=1

(�1)1+ja1jM1j(A):

For example, if A = [aij ] is a 3� 3 matrix, the Laplace expansion gives

detA = a11M11(A)� a12M12(A) + a13M13(A)

= a11

���� a22 a23
a32 a33

����� a12

���� a21 a23
a31 a33

����+ a13

���� a21 a22
a31 a32

����
= a11(a22a33 � a23a32)� a12(a21a33 � a23a31) + a13(a21a32 � a22a31)

= a11a22a33 � a11a23a32 � a12a21a33 + a12a23a31 + a13a21a32 � a13a22a31:

(The recursive de�nition also works for 2� 2 determinants, if we de�ne the
determinant of a 1� 1 matrix [t] to be the scalar t:

detA = a11M11(A)� a12M12(A) = a11a22 � a12a21:)

EXAMPLE 4.0.1 If P1P2P3 is a triangle with Pi = (xi; yi); i = 1; 2; 3,
then the area of triangle P1P2P3 is

1

2

������
x1 y1 1
x2 y2 1
x3 y3 1

������ or �
1

2

������
x1 y1 1
x2 y2 1
x3 y3 1

������ ;

according as the orientation of P1P2P3 is anti{clockwise or clockwise.

For from the de�nition of 3� 3 determinants, we have

1

2

������
x1 y1 1
x2 y2 1
x3 y3 1

������ =
1

2

�
x1

���� y2 1
y3 1

����� y1

���� x2 1
x3 1

����+
���� x2 y2
x3 y3

����
�

=
1

2

���� x2 � x1 y2 � y1
x3 � x1 y3 � y1

���� :

One property of determinants that follows immediately from the de�ni-
tion is the following:

THEOREM 4.0.1 If a row of a matrix is zero, then the value of the de-
terminant is zero.



74 CHAPTER 4. DETERMINANTS

(The corresponding result for columns also holds, but here a simple proof
by induction is needed.)

One of the simplest determinants to evaluate is that of a lower triangular
matrix.

THEOREM 4.0.2 Let A = [aij ], where aij = 0 if i < j. Then

detA = a11a22 : : :ann: (4.1)

An important special case is when A is a diagonal matrix.
If A =diag (a1; : : : ; an) then detA = a1 : : : an. In particular, for a scalar

matrix tIn, we have det (tIn) = tn.

Proof. Use induction on the size n of the matrix.
The result is true for n = 2. Now let n > 2 and assume the result true

for matrices of size n � 1. If A is n � n, then expanding detA along row 1
gives

detA = a11

���������

a22 0 : : : 0
a32 a33 : : : 0
...
an1 an2 : : : ann

���������
= a11(a22 : : :ann)

by the induction hypothesis.

If A is upper triangular, equation 4.1 remains true and the proof is again
an exercise in induction, with the slight di�erence that the column version
of theorem 4.0.1 is needed.

REMARK 4.0.1 It can be shown that the expanded form of the determi-
nant of an n � n matrix A consists of n! signed products �a1i1a2i2 : : : anin ,
where (i1; i2; : : : ; in) is a permutation of (1; 2; : : : ; n), the sign being 1 or
�1, according as the number of inversions of (i1; i2; : : : ; in) is even or odd.
An inversion occurs when ir > is but r < s. (The proof is not easy and is
omitted.)

The de�nition of the determinant of an n � n matrix was given in terms
of the �rst{row expansion. The next theorem says that we can expand
the determinant along any row or column. (The proof is not easy and is
omitted.)
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THEOREM 4.0.3

detA =
nX

j=1

(�1)i+jaijMij(A)

for i = 1; : : : ; n (the so{called i{th row expansion) and

detA =
nX

i=1

(�1)i+jaijMij(A)

for j = 1; : : : ; n (the so{called j{th column expansion).

REMARK 4.0.2 The expression (�1)i+j obeys the chess{board pattern
of signs: 2

6664
+ � + : : :
� + � : : :

+ � + : : :
...

3
7775 :

The following theorems can be proved by straightforward inductions on
the size of the matrix:

THEOREM 4.0.4 A matrix and its transpose have equal determinants;
that is

detAt = detA:

THEOREM 4.0.5 If two rows of a matrix are equal, the determinant is
zero. Similarly for columns.

THEOREM 4.0.6 If two rows of a matrix are interchanged, the determi-
nant changes sign.

EXAMPLE 4.0.2 If P1 = (x1; y1) and P2 = (x2; y2) are distinct points,
then the line through P1 and P2 has equation

������
x y 1
x1 y1 1
x2 y2 1

������ = 0:
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For, expanding the determinant along row 1, the equation becomes

ax+ by + c = 0;

where

a =

���� y1 1
y2 1

���� = y1 � y2 and b = �

���� x1 1
x2 1

���� = x2 � x1:

This represents a line, as not both a and b can be zero. Also this line passes
through Pi; i = 1; 2. For the determinant has its �rst and i{th rows equal
if x = xi and y = yi and is consequently zero.

There is a corresponding formula in three{dimensional geometry. If
P1; P2; P3 are non{collinear points in three{dimensional space, with Pi =
(xi; yi; zi); i = 1; 2; 3, then the equation

��������

x y z 1
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1

��������
= 0

represents the plane through P1; P2; P3. For, expanding the determinant
along row 1, the equation becomes ax+ by + cz + d = 0, where

a =

������
y1 z1 1
y2 z2 1
y3 z3 1

������ ; b = �
������
x1 z1 1
x2 z2 1
x3 z3 1

������ ; c =
������
x1 y1 1
x2 y2 1
x3 y3 1

������ :

As we shall see in chapter 6, this represents a plane if at least one of a; b; c
is non{zero. However, apart from sign and a factor 1

2
, the determinant

expressions for a; b; c give the values of the areas of projections of triangle
P1P2P3 on the (y; z); (x; z) and (x; y) planes, respectively. Geometrically,
it is then clear that at least one of a; b; c is non{zero. It is also possible to
give an algebraic proof of this fact.

Finally, the plane passes through Pi; i = 1; 2; 3 as the determinant has
its �rst and i{th rows equal if x = xi; y = yi; z = zi and is consequently
zero. We now work towards proving that a matrix is non{singular if its
determinant is non{zero.

DEFINITION 4.0.3 (Cofactor) The (i; j) cofactor of A, denoted by
Cij(A) (or Cij if there is no ambiguity) is de�ned by

Cij(A) = (�1)i+jMij(A):
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REMARK 4.0.3 It is important to notice that Cij(A), like Mij(A), does
not depend on aij . Use will be made of this observation presently.

In terms of the cofactor notation, Theorem 3:0:2 takes the form

THEOREM 4.0.7

detA =
nX

j=1

aijCij(A)

for i = 1; : : : ; n and

detA =
nX

i=1

aijCij(A)

for j = 1; : : : ; n.

Another result involving cofactors is

THEOREM 4.0.8 Let A be an n� n matrix. Then

(a)
nX

j=1

aijCkj(A) = 0 if i 6= k:

Also

(b)
nX

i=1

aijCik(A) = 0 if j 6= k:

Proof.
If A is n�n and i 6= k, let B be the matrix obtained from A by replacing

row k by row i. Then detB = 0 as B has two identical rows.
Now expand detB along row k. We get

0 = detB =
nX

j=1

bkjCkj(B)

=
nX

j=1

aijCkj(A);

in view of Remark 4.0.3.
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DEFINITION 4.0.4 (Adjoint) If A = [aij ] is an n � n matrix, the ad-

joint of A, denoted by adjA, is the transpose of the matrix of cofactors.
Hence

adjA =

2
6664

C11 C21 � � � Cn1

C12 C22 � � � Cn2

...
...

C1n C2n � � � Cnn

3
7775 :

Theorems 4.0.7 and 4.0.8 may be combined to give

THEOREM 4.0.9 Let A be an n� n matrix. Then

A(adjA) = (detA)In = (adjA)A:

Proof.

(A adjA)ik =
nX

j=1

aij(adjA)jk

=
nX

j=1

aijCkj(A)

= �ikdetA

= ((detA)In)ik:

Hence A(adjA) = (detA)In. The other equation is proved similarly.

COROLLARY 4.0.1 (Formula for the inverse) If detA 6= 0, then A
is non{singular and

A�1 =
1

detA
adjA:

EXAMPLE 4.0.3 The matrix

A =

2
4 1 2 3

4 5 6
8 8 9

3
5

is non{singular. For

detA =

���� 5 6
8 9

����� 2

���� 4 6
8 9

����+ 3

���� 4 5
8 8

����
= �3 + 24� 24

= �3 6= 0:
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Also

A�1 =
1

�3

2
4 C11 C21 C31

C12 C22 C32

C13 C23 C33

3
5

= �
1

3

2
66666666664

���� 5 6
8 9

���� �

���� 2 3
8 9

����
���� 2 3
5 6

����

�

���� 4 6
8 9

����
���� 1 3
8 9

���� �

���� 1 3
4 6

����
���� 4 5
8 8

���� �

���� 1 2
8 8

����
���� 1 2
4 5

����

3
77777777775

= �
1

3

2
4 �3 6 �3

12 �15 6
�8 8 �3

3
5 :

The following theorem is useful for simplifying and numerically evaluating
a determinant. Proofs are obtained by expanding along the corresponding
row or column.

THEOREM 4.0.10 The determinant is a linear function of each row and
column.
For example

(a)

������
a11 + a011 a12 + a012 a13 + a013

a21 a22 a23
a31 a32 a33

������ =
������
a11 a12 a13
a21 a22 a23
a31 a32 a33

������+
������
a011 a012 a013
a21 a22 a23
a31 a32 a33

������

(b)

������
ta11 ta12 ta13
a21 a22 a23
a31 a32 a33

������ = t

������
a11 a12 a13
a21 a22 a23
a31 a32 a33

������ :

COROLLARY 4.0.2 If a multiple of a row is added to another row, the
value of the determinant is unchanged. Similarly for columns.

Proof. We illustrate with a 3 � 3 example, but the proof is really quite
general.

������
a11 + ta21 a12 + ta22 a13 + ta23

a21 a22 a23
a31 a32 a33

������ =
������
a11 a12 a13
a21 a22 a23
a31 a32 a33

������+
������
ta21 ta22 ta23
a21 a22 a23
a31 a32 a33

������
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=

������
a11 a12 a13
a21 a22 a23
a31 a32 a33

������+ t

������
a21 a22 a23
a21 a22 a23
a31 a32 a33

������

=

������
a11 a12 a13
a21 a22 a23
a31 a32 a33

������+ t� 0

=

������
a11 a12 a13
a21 a22 a23
a31 a32 a33

������ :

To evaluate a determinant numerically, it is advisable to reduce the matrix
to row{echelon form, recording any sign changes caused by row interchanges,
together with any factors taken out of a row, as in the following examples.

EXAMPLE 4.0.4 Evaluate the determinant
������
1 2 3
4 5 6
8 8 9

������ :

Solution. Using row operations R2 ! R2 � 4R1 and R3 ! R3 � 8R1 and
then expanding along the �rst column, gives

������
1 2 3
4 5 6
8 8 9

������ =

������
1 2 3
0 �3 �6
0 �8 �15

������ =
���� �3 �6
�8 �15

����

= �3

���� 1 2
�8 �15

���� = �3
���� 1 2
0 1

���� = �3:
EXAMPLE 4.0.5 Evaluate the determinant��������

1 1 2 1
3 1 4 5
7 6 1 2
1 1 3 4

��������
:

Solution.
��������

1 1 2 1
3 1 4 5
7 6 1 2
1 1 3 4

��������
=

��������

1 1 2 1
0 �2 �2 2
0 �1 �13 �5
0 0 1 3

��������
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= �2

��������

1 1 2 1
0 1 1 �1
0 �1 �13 �5
0 0 1 3

��������

= �2

��������

1 1 2 1
0 1 1 �1
0 0 �12 �6
0 0 1 3

��������

= 2

��������

1 1 2 1
0 1 1 �1
0 0 1 3
0 0 �12 �6

��������

= 2

��������

1 1 2 1
0 1 1 �1
0 0 1 3
0 0 0 30

��������
= 60:

EXAMPLE 4.0.6 (Vandermonde determinant) Prove that

������
1 1 1
a b c
a2 b2 c2

������ = (b� a)(c� a)(c� b):

Solution. Subtracting column 1 from columns 2 and 3 , then expanding
along row 1, gives

������
1 1 1
a b c
a2 b2 c2

������ =

������
1 0 0
a b� a c� a
a2 b2 � a2 c2 � a2

������
=

���� b� a c� a

b2 � a2 c2 � a2

����
= (b� a)(c� a)

���� 1 1
b+ a c+ a

���� = (b� a)(c� a)(c� b):

REMARK 4.0.4 From theorems 4.0.6, 4.0.10 and corollary 4.0.2, we de-
duce

(a) det (EijA) = �detA,

(b) det (Ei(t)A) = t detA, if t 6= 0,
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(c) det (Eij(t)A) =detA.

It follows that if A is row{equivalent toB, then detB = cdetA, where c 6= 0.
Hence detB 6= 0 , detA 6= 0 and detB = 0 , detA = 0. Consequently
from theorem 2.5.8 and remark 2.5.7, we have the following important result:

THEOREM 4.0.11 Let A be an n � n matrix. Then

(i) A is non{singular if and only if detA 6= 0;

(ii) A is singular if and only if detA = 0;

(iii) the homogeneous system AX = 0 has a non{trivial solution if and
only if detA = 0.

EXAMPLE 4.0.7 Find the rational numbers a for which the following
homogeneous system has a non{trivial solution and solve the system for
these values of a:

x� 2y + 3z = 0

ax+ 3y + 2z = 0

6x+ y + az = 0:

Solution. The coe�cient determinant of the system is

� =

������
1 �2 3
a 3 2
6 1 a

������ =

������
1 �2 3
0 3 + 2a 2� 3a
0 13 a� 18

������
=

���� 3 + 2a 2� 3a
13 a� 18

����
= (3 + 2a)(a� 18)� 13(2� 3a)

= 2a2 + 6a� 80 = 2(a+ 8)(a� 5):

So � = 0 , a = �8 or a = 5 and these values of a are the only values for
which the given homogeneous system has a non{trivial solution.

If a = �8, the coe�cient matrix has reduced row{echelon form equal to

2
4 1 0 �1

0 1 �2
0 0 0

3
5
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and so the complete solution is x = z; y = 2z, with z arbitrary. If a = 5,
the coe�cient matrix has reduced row{echelon form equal to2

4 1 0 1
0 1 �1
0 0 0

3
5

and so the complete solution is x = �z; y = z, with z arbitrary.

EXAMPLE 4.0.8 Find the values of t for which the following system is
consistent and solve the system in each case:

x+ y = 1

tx + y = t

(1 + t)x+ 2y = 3:

Solution. Suppose that the given system has a solution (x0; y0). Then the
following homogeneous system

x+ y + z = 0

tx + y + tz = 0

(1 + t)x + 2y + 3z = 0

will have a non{trivial solution

x = x0; y = y0; z = �1:

Hence the coe�cient determinant � is zero. However

� =

������
1 1 1
t 1 t

1 + t 2 3

������ =
������

1 0 0
t 1� t 0

1 + t 1� t 2� t

������ =
���� 1� t 0
1� t 2� t

���� = (1�t)(2�t):

Hence t = 1 or t = 2. If t = 1, the given system becomes

x+ y = 1

x+ y = 1

2x+ 2y = 3

which is clearly inconsistent. If t = 2, the given system becomes

x+ y = 1

2x+ y = 2

3x+ 2y = 3
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which has the unique solution x = 1; y = 0.

To �nish this section, we present an old (1750) method of solving a
system of n equations in n unknowns called Cramer's rule . The method is
not used in practice. However it has a theoretical use as it reveals explicitly
how the solution depends on the coe�cients of the augmented matrix.

THEOREM 4.0.12 (Cramer's rule) The system of n linear equations
in n unknowns x1; : : : ; xn

a11x1 + a12x2 + � � �+ a1nxn = b1

a21x1 + a22x2 + � � �+ a2nxn = b2
...

an1x1 + an2x2 + � � �+ annxn = bn

has a unique solution if � = det [aij ] 6= 0, namely

x1 =
�1

�
; x2 =

�2

�
; : : : ; xn =

�n

�
;

where �i is the determinant of the matrix formed by replacing the i{th
column of the coe�cient matrix A by the entries b1; b2; : : : ; bn.

Proof. Suppose the coe�cient determinant � 6= 0. Then by corollary 4.0.1,
A�1 exists and is given by A�1 = 1

�
adjA and the system has the unique

solution2
6664

x1
x2
...
xn

3
7775 = A�1

2
6664

b1
b2
...
bn

3
7775 =

1

�

2
6664

C11 C21 � � � Cn1

C12 C22 � � � Cn2

...
...

C1n C2n � � � Cnn

3
7775

2
6664

b1
b2
...
bn

3
7775

=
1

�

2
6664

b1C11 + b2C21 + : : :+ bnCn1

b2C12 + b2C22 + : : :+ bnCn2

...
bnC1n + b2C2n + : : :+ bnCnn

3
7775 :

However the i{th component of the last vector is the expansion of �i along
column i. Hence 2

6664
x1
x2
...
xn

3
7775 =

1

�

2
6664

�1

�2

...
�n

3
7775 =

2
6664

�1=�
�2=�

...
�n=�

3
7775 :
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4.1 PROBLEMS

.

1. If the points Pi = (xi; yi); i = 1; 2; 3; 4 form a quadrilateral with ver-
tices in anti{clockwise orientation, prove that the area of the quadri-
lateral equals

1

2

����� x1 x2
y1 y2

���� +
���� x2 x3
y2 y3

����+
���� x3 x4
y3 y4

����+
���� x4 x1
y4 y1

����
�
:

(This formula generalizes to a simple polygon and is known as the
Surveyor's formula.)

2. Prove that the following identity holds by expressing the left{hand
side as the sum of 8 determinants:������

a+ x b+ y c+ z

x+ u y + v z + w
u+ a v + b w + c

������ = 2

������
a b c

x y z
u v w

������ :

3. Prove that ������
n2 (n+ 1)2 (n+ 2)2

(n+ 1)2 (n+ 2)2 (n+ 3)2

(n+ 2)2 (n+ 3)2 (n+ 4)2

������ = �8:

4. Evaluate the following determinants:

(a)

������
246 427 327
1014 543 443
�342 721 621

������ (b)

��������

1 2 3 4
�2 1 �4 3
3 �4 �1 2
4 3 �2 �1

��������
.

[Answers: (a) �29400000; (b) 900.]

5. Compute the inverse of the matrix

A =

2
4 1 0 �2

3 1 4
5 2 �3

3
5

by �rst computing the adjoint matrix.

[Answer: A�1 = �1

13

2
4 �11 �4 2

29 7 �10
1 �2 1

3
5.]
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6. Prove that the following identities hold:

(i)

������
2a 2b b� c

2b 2a a+ c
a + b a+ b b

������ = �2(a� b)2(a+ b);

(ii)

������
b+ c b c
c c+ a a

b a a+ b

������ = 2a(b2 + c2):

7. Let Pi = (xi; yi); i = 1; 2; 3. If x1; x2; x3 are distinct, prove that there
is precisely one curve of the form y = ax2 + bx + c passing through
P1; P2 and P3.

8. Let

A =

2
4 1 1 �1

2 3 k
1 k 3

3
5 :

Find the values of k for which detA = 0 and hence, or otherwise,
determine the value of k for which the following system has more than
one solution:

x+ y � z = 1

2x+ 3y + kz = 3

x+ ky + 3z = 2:

Solve the system for this value of k and determine the solution for
which x2 + y2 + z2 has least value.

[Answer: k = 2; x = 10=21; y = 13=21; z = 2=21.]

9. By considering the coe�cient determinant, �nd all rational numbers a
and b for which the following system has (i) no solutions, (ii) exactly
one solution, (iii) in�nitely many solutions:

x� 2y + bz = 3

ax+ 2z = 2

5x+ 2y = 1:

Solve the system in case (iii).

[Answer: (i) ab = 12 and a 6= 3, no solution; ab 6= 12, unique solution;
a = 3; b = 4, in�nitely many solutions; x = �2

3
z+ 2

3
; y = 5

3
z� 7

6
, with

z arbitrary.]
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10. Express the determinant of the matrix

B =

2
664

1 1 2 1
1 2 3 4
2 4 7 2t+ 6
2 2 6� t t

3
775

as as polynomial in t and hence determine the rational values of t for
which B�1 exists.

[Answer: detB = (t� 2)(2t� 1); t 6= 2 and t 6= 1
2
.]

11. If A is a 3� 3 matrix over a �eld and detA 6= 0, prove that

(i) det (adjA) = (detA)2;

(ii) (adjA)�1 =
1

detA
A = adj (A�1):

12. Suppose that A is a real 3� 3 matrix such that AtA = I3.

(i) Prove that At(A� I3) = �(A� I3)t.

(ii) Prove that detA = �1.

(iii) Use (i) to prove that if detA = 1, then det (A� I3) = 0.

13. If A is a square matrix such that one column is a linear combination of
the remaining columns, prove that detA = 0. Prove that the converse
also holds.

14. Use Cramer's rule to solve the system

�2x+ 3y � z = 1
x+ 2y � z = 4

�2x� y + z = �3.

[Answer: x = 2; y = 3; z = 4.]

15. Use remark 4.0.4 to deduce that

detEij = �1; detEi(t) = t; detEij(t) = 1

and use theorem 2.5.8 and induction, to prove that

det (BA) = detB detA;

if B is non{singular. Also prove that the formula holds when B is
singular.
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16. Prove that��������

a+ b+ c a+ b a a
a+ b a+ b+ c a a

a a a+ b+ c a+ b
a a a + b a+ b+ c

��������
= c2(2b+c)(4a+2b+c):

17. Prove that
��������

1 + u1 u1 u1 u1
u2 1 + u2 u2 u2
u3 u3 1 + u3 u3
u4 u4 u4 1 + u4

��������
= 1 + u1 + u2 + u3 + u4:

18. Let A 2 Mn�n(F ). If At = �A, prove that detA = 0 if n is odd and
1 + 1 6= 0 in F .

19. Prove that ��������

1 1 1 1
r 1 1 1
r r 1 1
r r r 1

��������
= (1� r)3:

20. Express the determinant

������
1 a2 � bc a4

1 b2 � ca b4

1 c2 � ab c4

������
as the product of one quadratic and four linear factors.

[Answer: (b� a)(c� a)(c� b)(a+ b+ c)(b2+ bc+ c2 + ac+ ab+ a2).]


