Math114 - Linear Algebra

Lecture 3

Essentials update

- Lecturer: Dr Vladimir Pestov
- phone: 463-5664
- e-mail vova@mcs.vuw.ac.nz

VP is at the help desk:
Tuesday July 25, 9-11 am;
Friday July 28, 9-11 am.
(Consultation room Cotton 436).

+ other people at the help desk, at other times
- Tutorials: start this week.
- Transparencies: go to the course page
http://www.mcs.vuw.ac.nz/courses/MATH114 in .ps and .pdf format.
- Recommended reading: Anton, Elementary Linear Algebra, Ch. I and II.
(Those things we were doing to matrices when solving linear eq's:)

Elementary Row Operations

1) Multiply throughout a row by a non-zero scalar
2) Interchange two rows (we haven't had yet to do this)
3) To a row, add a scalar multiple of another row.
(Anton, p. 5)
Elementary row operations can change a matrix a lot, e.g. $\left(\begin{array}{lll}4 & 2 & 4 \\ 6 & 8 & 1\end{array}\right) \rightsquigarrow\left(\begin{array}{ccc}1 & 0 & \frac{3}{2} \\ 0 & 1 & -1\end{array}\right)$ in 4 EROs.
def. A matrix A is row equivalent ($R E$) to B if some finite sequence of elementary row operations changes A to B.
notation: $A \stackrel{R E}{\cong} B$.
\& this is in fact an equivalence relation: reflexive, symmetric, and transitive.
\& similarly, one can define elementary column operations and the column equivalent matrices $(A \stackrel{C E}{\cong} B)$; we will not be using these.

We shall write \vec{a}, \vec{b}, \ldots or $\mathrm{a}, \mathrm{b}, \ldots$, for row vectors, and $\vec{a}^{T}, \vec{b}^{T}, \ldots$ or $\mathbf{a}^{T}, \mathbf{b}^{T}, \ldots$ for column vectors.
ex.: if $\mathrm{x}=\vec{x}=\left(x_{1}, x_{2}, x_{3}\right)$, then
$\mathbf{x}^{T}=\vec{x}^{T}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$.
\& Plain letters are used for scalars (= ordinary numbers)

In writing: use x instead of x or \vec{x}.
Note: $\left(A^{T}\right)^{T}=A$.
(reflect A in its diagonal twice, and you get A back again)
warning: beware of trying to perform too many EROs at once, to avoid errors.
What is the object of these changes?
We aim at a matrix of this type:

(a 'staircase pattern'). More exactly:
def. A matrix A is in the reduced row-echelon form if it has the following properties:

- if a row does not consist entirely of zeros, then the first nonzero entry in it is 1 . ('a leading 1 ')
- any rows that consist entirely of zeros are grouped together at the bottom.
- the leading 1 in the lower row always occurs farther to the right than the leading 1 in the higher row - each column that contains a leading 1 has zeros everywhere else.
ex.: all matrices obtained by Gauss-Jordan elimination in the previous lectures were in the reduced rowechelon form.

Gauss-Jordan elimination =
putting the coefficient matrix of a system of linear equations into the reduced row-echelon form by means of elementary row operations.

A bigger ex. of solving linear eqns (other ex.: Anton, §1.2)

$$
\begin{aligned}
& 2 x+6 y+6 z=2 \\
& 3 x+9 y-3 z=-5 \\
& -2 x-3 y-3 z=3 \\
& x-y+12 z=3 \\
& \left(\begin{array}{rrr:r}
\underline{2} & 6 & 6 & 2 \\
3 & 9 & -3 & -5 \\
-2 & -3 & -3 & 3 \\
1 & -1 & 12 & 3
\end{array}\right) \\
& \stackrel{R E}{\cong}_{r_{1} \times \frac{1}{2}}\left(\begin{array}{rrrr}
1 & 3 & 3 & 1 \\
\underline{3} & 9 & -3 & -5 \\
-2 & -3 & -3 & 3 \\
\underline{1} & -1 & 12 & 3
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& {\stackrel{R E}{\cong} r_{4}+4 r_{2}\left(\begin{array}{rrrr}
1 & 3 & 3 & 1 \\
0 & 1 & 1 & \frac{5}{3} \\
0 & 0 & \frac{-12}{} & -8 \\
0 & 0 & 13 & \frac{26}{3}
\end{array}\right)}^{\stackrel{R E}{\cong} r_{3} \times\left(-\frac{1}{12}\right)\left(\begin{array}{rrrr}
1 & 3 & 3 & 1 \\
0 & 1 & 1 & \frac{5}{3} \\
0 & 0 & 1 & \frac{2}{3} \\
0 & 0 & 13 & \frac{26}{3}
\end{array}\right)} \begin{array}{l}
\quad \stackrel{R E}{\cong} r_{4}-13 r_{3}\left(\begin{array}{rrrr}
1 & 3 & 3 & 1 \\
0 & 1 & 1 & \frac{5}{3} \\
0 & 0 & 1 & \frac{2}{3} \\
0 & 0 & 0 & 0
\end{array}\right)
\end{array},
\end{aligned}
$$

The Gauss elimination is over. The so-called rowechelon form (all properties but 4).
Now use leading 1 s to change everything above them to 0 , working from right to left.

$$
\stackrel{\substack{r_{2}-3 r_{1} \\
r_{3}+2 r_{1} \\
r_{4}-r_{1}}}{\stackrel{R E}{\cong}}\left(\begin{array}{rrrr}
1 & 3 & 3 & 1 \\
0 & 0 & -12 & -8 \\
0 & 3 & 3 & 5 \\
0 & -4 & 9 & 2
\end{array}\right) \quad \begin{aligned}
& \text { we have tidied up } \\
& \text { the 1st column: } \\
& \Rightarrow x \text { is only left } \\
& \text { in the 1st eqn. }
\end{aligned}
$$

How to maintain the staircase pattern in the 2nd column? The 0 entry is no good! \Rightarrow interchange rows:

$$
\begin{aligned}
& \stackrel{R E}{\cong} r_{2} \leftrightarrow r_{3}\left(\begin{array}{rrrr}
1 & 3 & 3 & 1 \\
0 & \underline{3} & 3 & 5 \\
0 & 0 & -12 & -8 \\
0 & -4 & 9 & 2
\end{array}\right) \quad \begin{array}{l}
\text { now we can get } \\
\text { a } 1=A_{22} \text { by } \\
\text { division }
\end{array} \\
& \stackrel{R E}{\cong} r_{2 \times \frac{1}{3}}\left(\begin{array}{rrrr}
1 & 3 & 3 & 1 \\
0 & 1 & 1 & \frac{5}{3} \\
0 & 0 & -12 & -8 \\
0 & \underline{-4} & 9 & 2
\end{array}\right) \quad \begin{array}{l}
\text { use that } 1 \text { to } \\
\text { change everything } \\
\text { below it to } 0
\end{array}
\end{aligned}
$$

(never mind what is left above! \rightsquigarrow later).

Start with the lowest leading 1.

$$
\begin{aligned}
& \stackrel{R E}{\cong} r_{r_{1}-3 r_{3}}^{r_{2}-r_{3}}(
\end{aligned}\left(\begin{array}{lllr}
1 & 3 & 0 & -1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & \frac{2}{3} \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Reduced row-echelon form. (Check!)
And that's it:

$$
\begin{array}{rlr}
x & & =-4 \\
y & = & 1 \\
& z & =\frac{2}{3}
\end{array}
$$

The 4th row tells us nothing about $x, y, z \Rightarrow$ forget it. Unique solution: $(x, y, z)=\left(-4,1, \frac{2}{3}\right)$.

Gauss-Jordan elimination procedure:

\& x occurs in at most one equation, y occurs in at most one eq.,

