E.L. Lady

General Principle. If the left-hand factor A in a product AB is changed by doing an elementary row operation, then the product AB will be changed by the same elementary row operation.

Problem. To find X such that AX = I, where $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{bmatrix}$. The method

is to do elementary row operations until A is reduced to the identity matrix I, simulataneously doing the same sequence of elementary row operations to I.

AX = I

	$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{bmatrix} X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
Add -5 times the first row to the third to get	$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -4 \end{bmatrix} X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -5 & 0 & 1 \end{bmatrix}$
Multiply the second row by $\frac{1}{2}$ then multiply the third row by $-\frac{1}{4}$ to get	$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 1 \end{bmatrix} X = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ \frac{5}{4} & 0 & -\frac{1}{4} \end{bmatrix}$
Subtract the second row from the first to get	$\begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 1 \end{bmatrix} X = \begin{bmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 \\ \frac{5}{4} & 0 & -\frac{1}{4} \end{bmatrix}$
Add $\frac{1}{2}$ the third row to the first. Then subtract $\frac{3}{2}$ the third from from the second.	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} X = \begin{bmatrix} \frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ \frac{5}{4} & 0 & -\frac{1}{4} \end{bmatrix}$

Thus
$$\begin{bmatrix} \frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ \frac{5}{4} & 0 & -\frac{1}{4} \end{bmatrix}$$
 is the inverse of
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{bmatrix}.$$

Problem. To find an $n \times n$ matrix X such that I = XA. The method is to start with the equation A = IA and successively do elementary row operations to both sides until we obtain the equation I = XA. Notice that the set of calculations is actually the same as that used to find X such that AX = I.

	A = IA
	$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{bmatrix}$
Add -5 times the first row to the third to get	$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -5 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{bmatrix}$
Multiply the second row by $\frac{1}{2}$ then multiply the third row by $-\frac{1}{4}$ to get	$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ \frac{5}{4} & 0 & -\frac{1}{4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{bmatrix}$
Subtract the second row from the first to get	$\begin{bmatrix} 1 & 0 & -\frac{1}{2} \\ 0 & 1 & \frac{3}{2} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -\frac{1}{2} & 0 \\ 0 & \frac{1}{2} & 0 \\ \frac{5}{4} & 0 & -\frac{1}{4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{bmatrix}$
Add $\frac{1}{2}$ the third row to the first. Then subtract $\frac{3}{2}$ the third from from the second.	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ \frac{5}{4} & 0 & -\frac{1}{4} \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{bmatrix}$
	$I = \begin{bmatrix} \frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ \frac{5}{4} & 0 & -\frac{1}{4} \end{bmatrix} A$

(Notice that the right-hand factor on the right hand side never changes.)

Thus
$$\begin{bmatrix} \frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ \frac{5}{4} & 0 & -\frac{1}{4} \end{bmatrix}$$
 is the inverse of
$$\begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1 \end{bmatrix}$$
.