E. L. Lady

General Principle. If the left-hand factor A in a product $A B$ is changed by doing an elementary row operation, then the product $A B$ will be changed by the same elementary row operation.

Problem. To find X such that $A X=I$, where $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1\end{array}\right]$. The method is to do elementary row operations until A is reduced to the identity matrix I, simulataneously doing the same sequence of elementary row operations to I.

$$
A X=I
$$

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 3 \\
5 & 5 & 1
\end{array}\right] X=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$\begin{aligned} & \text { Add }-5 \text { times the first } \\ & \text { row to the third to get }\end{aligned} \quad\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 2 & 3 \\ 0 & 0 & -4\end{array}\right] X=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -5 & 0 & 1\end{array}\right]$
Multiply the second row by $\frac{1}{2}$ then multiply the third row by $-\frac{1}{4}$ to get

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & \frac{3}{2} \\
0 & 0 & 1
\end{array}\right] X=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
\frac{5}{4} & 0 & -\frac{1}{4}
\end{array}\right]
$$

Subtract the second row from the first to get

$$
\left[\begin{array}{ccc}
1 & 0 & -\frac{1}{2} \\
0 & 1 & \frac{3}{2} \\
0 & 0 & 1
\end{array}\right] X=\left[\begin{array}{ccc}
1 & -\frac{1}{2} & 0 \\
0 & \frac{1}{2} & 0 \\
\frac{5}{4} & 0 & -\frac{1}{4}
\end{array}\right]
$$

Add $\frac{1}{2}$ the third row to the first. Then subtract $\frac{3}{2}$ the third from from the second.

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] X=\left[\begin{array}{ccc}
\frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\
-\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\
\frac{5}{4} & 0 & -\frac{1}{4}
\end{array}\right]
$$

Thus $\left[\begin{array}{ccc}\frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ \frac{5}{4} & 0 & -\frac{1}{4}\end{array}\right]$ is the inverse of $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1\end{array}\right]$.

Problem. To find an $n \times n$ matrix X such that $I=X A$.
The method is to start with the equation $A=I A$ and successively do elementary row operations to both sides until we obtain the equation $I=X A$.
Notice that the set of calculations is actually the same as that used to find X such that $A X=I$.

Add -5 times the first row to the third to get

$$
\begin{aligned}
& A=I A \\
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 3 \\
5 & 5 & 1
\end{array}\right] }=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 3 \\
5 & 5 & 1
\end{array}\right] \\
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 2 & 3 \\
0 & 0 & -4
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-5 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 3 \\
5 & 5 & 1
\end{array}\right] }
\end{aligned}
$$

Multiply the second row by $\frac{1}{2}$ then multiply the third row by $-\frac{1}{4}$ to get

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & \frac{3}{2} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{2} & 0 \\
\frac{5}{4} & 0 & -\frac{1}{4}
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 2 & 3 \\
5 & 5 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
1 & 0 & -\frac{1}{2} \\
0 & 1 & \frac{3}{2} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & -\frac{1}{2} & 0 \\
0 & \frac{1}{2} & 0 \\
\frac{5}{4} & 0 & -\frac{1}{4}
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 2 & 3 \\
5 & 5 & 1
\end{array}\right]
$$

Add $\frac{1}{2}$ the third row to the first. Then subtract $\frac{3}{2}$ the third from from the second.

$$
\begin{aligned}
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] } & =\left[\begin{array}{ccc}
\frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\
-\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\
\frac{5}{4} & 0 & -\frac{1}{4}
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 3 \\
5 & 5 & 1
\end{array}\right] \\
I & =\left[\begin{array}{ccc}
\frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\
-\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\
\frac{5}{4} & 0 & -\frac{1}{4}
\end{array}\right] A
\end{aligned}
$$

(Notice that the right-hand factor on the right hand side never changes.)
Thus $\left[\begin{array}{ccc}\frac{13}{8} & -\frac{1}{2} & -\frac{1}{8} \\ -\frac{15}{8} & \frac{1}{2} & \frac{3}{8} \\ \frac{5}{4} & 0 & -\frac{1}{4}\end{array}\right]$ is the inverse of $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 2 & 3 \\ 5 & 5 & 1\end{array}\right]$.

