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From elementary algebra one i1s familiar with the concept of a determinant which arises when we find
solutions of simultaneous equations in two or three independent variables.

FEzample 1. Find the solution of the three simultaneous equations:

20 + 4y + z = by,
dx + 2y — z = bs,
Te +y— 3z = b3,
where x, y and z are the three unknowns and b, b3 and b3 are the three known quantities. Determinants

also arise when we find 2-dimensional area, 3-dimensional or in general an n-dimensional volume, equation
of a line passing through three points, etc., etc.

Ezample 2. Find the vector area subtended by the two vectors
Vi={2,6},Vy={1,4} (1)
or, find the scalar volume subtended by the three vectors
V, ={2,6,5}, Vy={3,1,4} , V3 ={1,2,4}. (2)

Determinants also arise when dealing with resistive circuits, where to find the flow of currents in various
resistive branches of the circuit we have to use Cramer’s rule. Determinants also arise when we deal with a
system of first-order electric circuits.

Consider an (n X n)-matrix A as shown below:

1 2 n
a% Cl% aé ay
n
a2 (12 (12 a2 .
A= S . (3)
1 2 3 n
ap ap ay an

Associated with this square matrix is a number called the determinant and we write 1t as:

a% a% azl)’ B 44
1 2 3 n
as a; ay ... ... aj
A= " i @
al a2 & ... ... a7

n n

We call |A| the determinant of matrix [A]. Sometimes it is also written as Det(A) or A (where A =
Delta for D in Greek).

In the notation used here the subscript denotes the row and superscript denotes the column. Thus, a3
is located in the 4-th row of the 3-rd column. In general the element @] is located at the intersection of the



n-th row and m-th column. An element lying on the principal diagonal is denoted by a2 (no summation
intended). Thus the element a3 in a (4 x 4)-determinant is a diagonal element lying on the principal diagonal
at the intersection of 3-rd row and 3-rd column.

1 MINORS

Consider an (n x n)-order matrix A. Tts determinant is

aj ai ai i ay’ af
@ @ | @ @ |
a3 a3 | a3  aj ag | ... df
aj a3 | 4 df ap | ... af

|A| = . . | . . . | 5
a2 | d N ©)
a,ll C‘Z a;q’l afl ay’ ap, (nxn)

Now choose a number m < n. Consider now the m x m = m? elements of the minor determinant |M|,
whose elements are common to m rows and m columns. Such an (m x m)-determinant is called the minor
determinant [M|, or the m-th order minor of |A|. Such an (m x m)-minor is delineated by the dashed lines
in the figure above. More specifically consider the minor M23% which consists of elements common to the

3-rd, 4-th, 5-th row and 2-nd, 3-rd, 4-th column;i.e.,

2 3 4
234 a% ag ai

Msys = | a3z a3 aj |. (6)
2 3 4

a5 as Qs

If we delete all the elements in the 3-rd, 4-th, 5-th row and in the 2-nd, 3-rd, 4-th column, we obtain the
complementary minor

aj a} af aj
ay a3 aj ay
—156..;m 1 5 & n
_ | at @& a a
Mg = 6 76 76 6 (7)
1.5 6 n
al a® af a

. . . A
The co-factor of the minor M332 is defined as A%3%; i.e., cof(M%32)= A232, where

AZY = ()P GHASRT 0 — M0 (8)

since (—=1)?T12 = (=1)! = —1.

In the simple case of a (3 x 3)-determinant, the co-factor of the element alis A”; i.e., cof(aff)é A™
where

A = (1™ MG, (9)
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where ¢ # j #n and k # [ # m. Thus,

Al = (—1)** M, ,
(11 (12
- ai aé ’ (10)

and

12
1 3
_ _| @ a1
o al al (11)

Consider now a (4 x 4)-determinant

|A| = 1 2 3 4 |- (12)

In this example the minor whose elements common to the 1-st and 2-nd columns and the 2-nd and 3-rd
rows are

1 2
a; a .
Mys=| 7 3 (13)
asz as

The cofactor of this minor 1s

Al = ()N,

3 4
_ | & 4
= az aﬁi ‘ , (14)

since (—1)T° = (-1)® = 1.
As another example, let the minor of the (4 x 4)-determinant be

3 4
34 _ | Q@3 Gy

M5 = 3 4 (15)
asz as

The co-factor of this minor is

AL} = ()R,

1 2
_ | @ a3
|4 4 )

because (—1)™5 = (—1)12 = 1.

We now give an inductive definition for the evaluation of a determinant, even though it is not that useful
for practical purposes .

Definition 1. Consider an (n x n)-matrix with elements @' and corresponding co-factors A*. Then,
in terms of the elements of the first row

|A| = alAl + a?A? + @AY + .. +aTAT,

=> dfAl (17)
p=1



In terms of the elements of the second row, the determinant is

|A|:a%A%—}—a%A%—}—a‘;’Ag’—}—...—}—ag 2
> ab Al (18)
p=1

In general, the value of the determinant in terms of the elements of the k-th row is

|A| = a; A +aiAZ + @AY + ..+ al A}

=> A}, 1<k<n. (19)
p=1

This expansion formula states that the value of an (n x n)-determinant depends on n determinants each
of (n — 1) order. Each of these (n — 1)-order determinants depend on (n — 1) determinants of order (n — 2)
each, and so on. If this process is continued then we finally end up with a determinant of order 1. For this
reason it 1s called an inductive definition and is not very practical for determinants of order n > 4.
Consider a (2 x 2) matrix

A= o o] (20)

2
a5 a5

The determinant of [a?] in terms of the elements of the first row is

|A| = ajA] +aiAl (21)
where
—2
Al = (-1)"*'M, = a3, (22)
—1
A= (1)**'"M; = —ay, (23)
and therefore
|A| = aja2 — aal . (24)

Writing the expansion in terms of the elements of the second row, we find
|A| = a3A; + a3A7
= (~ )" alM; + (—1)"alM,
= —aya? + alal = alal — alal . (25)

We can also carry out the expansion in terms of the elements of first column or the second column. Thus,
using the first column, we find

|A|=ajAf + a3A5,
= (-1)*1alM, + (—1)*2alM, |
=ajal —alal (26)

which is the same value as the one obtained before. In terms of the elements of the second column, the value
of the determinant is

|A| = aAY +ajA],
—1 —1
= (=1)**'aiM, + (=1)**?a}M,

=—a’al + ala?, (27)



which again is the same value as the one obtained earlier.

Note that if we take elements of one row and multiply each element in this row with the corresponding
co-factors of the elements located in a different row and take the sum of the products, the result adds up
to zero. As a simple example, let the elements in the first row be al,a?. The successive cofactors of the

elements in the second row are A} = —Mﬁ = —a? and AZ = —Mi = —al. Therefore, taking their product
and then adding the two we find
alAd+a?A2 = —aja? +aa; = 0. (28)

Thus, if we multiply the elements of one row with the co-factors of another row, then the sum adds up to
zero. Therefore, to find the non-trivial value of the determinant, the elements and the associated co-factors
should belong to the same row or same column.

We now consider a (3 x 3) determinant

aj ai a}
Al=|a; a3 a |. (29)

1
az asz daj

Using expansion in terms of the elements of the first (or second, or third) row, we find that the value of the
determinant is:

_ 141 2 A2 343
|Al = a;Aj +ajAj +ajA7,
_ 141 13723 241 27 r13 3+1 _3nrl2
= (=1) " ay Mz + (=1)"" ey Mz + (=1)"" a7Ma3
2 3 1 3 1 2
_ 1| @@ Q3 | a9| Q3 Qa3 + 43 az aj
= ay a2 a3 aq ak 43 aq ak a2 |
3 4ag 3 ag 3 03
1.2 3 2.3 1 3.1 2 1.3 2 2.1 3 3.2 1
= (aja3a;3 + ajayaz + ajazaz) — (ayaya; + ajaza; + ajazaz). (30)

The same value is obtained when we use expansion in terms of the elements of the second or third row.

Remark 1. Note the subscripts which represent the rows. The subscripts in each element of the product
are in the natural order 1,2,3. The column indices are (1,2,3); (2,3,1); (3,1,2); and (1,3,2); (2,1,3);
(3,2,1). We note that (2,3,1) and (3, 1,2) are even permutations of (1,2,3); and (1,3,2); (2,1,3); (3,2,1)
are odd permutations of (1,2, 3). We further note that for even permutations the multiplicative constant is
(4+1); in the case of odd permutations the multiplicative constant is (—1). The general rule for the signature
of a permutation is given in terms of inversions, which we will discuss at an appropriate place in this discourse.

Remark 2. We now realign the product terms in such a manner that the superscripts representing the
columns are aligned in the natural order. Thus, after rearrangement, we find

|A| = (aya3a5 + agaia; + aya3a?) — (ajazay + ayaiaz + agaza?). (31)

In this case the row subscripts (1,2,3); (3,1,2); (2,3,1) are even permutations of (1,2,3) and the row

subscripts (1,3,2); (2,1,3); (3,2,1) are odd permutations of (1,2,3). Therefore in the first grouping the
multiplicative constant is (+1) and in the second grouping the multiplicative constant is (—1).

The important fact is that this rearrangement reflects expansion of the (3 x 3)-determinant in terms of
the elements of the j-th column, where the index j may be 1,2 or 3. Thus, for j =1,

2 2 2 3 2 3
|A| = al a; as | al ay ay + al ay ay
=ap 38 2| 42 43 30 a2 48 |
2 a3 3 03 2 O3
_ 11l 11 11 Q¢
=a;A;] +a3A; + azAj3, (32)



In general, we can show that for a (3 x 3)-determinant there are 3! ways to find the non-trivial value of
the determinant. Any other set of 3! arrangements will lead to the trivial value zero. We first list the 3!
ways which lead to the non-trivial result. These are:

1. Expansion in terms of the elements of the rows:
|A| = ajA] +a?A? +aAT | (1-st row)
= a3 A} +aiAZ +d3A3 | (2-nd row)
= a3A} +aiAZ + a3A3 . (3-1d row) (33)
2. Expansion in terms of the elements of the columns:
|A| = alA] +ajAl +alAL | (1-st column)
=alA? +aiAZ +aiAZ | (2-nd column)
=a$A +a3A3 +ajA} . (3-rd column) (34)
There are another 3! arrangements which yield the trivial value zero. These are
ajAj +alA2+dlAS =0,
alAY+a?A2+alAS =0,
adAl +a2A? +a3AY =0,
a3Aj +ajA+a3A5 =0,
asAl +a3A? +a3AY =0,
ajAj +a3A2 +a3A5 =0. (35)
We note that the expansion of a (2 x 2)-determinant involves 2! terms, and the expansion of a (3 x 3)-
determinant involves 3 x 2! = 3! terms, because the expansion invlolves three (2 x 2)-minors, where each

(2% 2) minor has two terms. Using inductive reasoning we find that a (4 x 4)-determinant will have 4 x 3! = 4!
terms, because the expansion will involve four (3 x 3)-minors. Thus we find:

(n x n)-determinant Number of terms

(2 x 2) 2=2,

(3 x 3) 31=6,

(4 x 4) 41 =24,

(5 % 5) 5! = 120,

(6 % 6) 6! = 720,

(7% 7) 71'= 5,040,

(8 x 8) 8! = 40, 320,

(9 % 9) 9! = 362,880,
(10 x 10) 10! = 3,628, 800.

Obviously the number of terms in an higher order determinant increases as the order n increases. It
is well known that the growth of the factorial function n! is much greater compared to the growth of an
exponential function e”. In fact

n

lim — —0, (36)

n—oo n!
which verifies our assertion that n! for large n involves a very large number of terms. In such cases when
n > 3, the inductive algorithm based on Definition 1 is not very practical. This process requires some
modification to make it simpler. We describe one such procedure now.



2 GENERALIZED LAPLACE EXPANSION FOR n >3

So far we showed how to carry out the expansion of a determinant in terms of the elements of a row
(column). We now show that in the case of higher order determinants of order n > 3, we can easily carry
out the expansion of the determinant in terms of all possible row (column) (2 x 2)-minors or possibly (3 x 3)-
r (4 x 4)-minors.
As an example we first consider a (4 x 4)-determinant:

a a; a; a
Al=| 0 2 & a4l (37)

Take now any two rows (columns) and for convenience let these be the 1-st and 2-nd rows. In a (4 x 4)-
determinant there exist (;‘) = o 2),2, = 3! (2 x 2)-minors, whose elements lie in the 1-st and 2-nd rows.

These (2 x 2)-minors are
M%%v M12’ M127
M12: M12’
M12’

where the dead subscripts (1,2) represent elements in the first and second rows and the live subscripts in
the ascending order (1,2), (1,3), (1,4); (2,3), (2,4); (3,4) represent the column indices. Corresponding to
these minors we have 6-(2 x 2)-co- factors

12
Al?’ Al?’ Al?a
24
A1‘77 A12’

These cofactors are related to the complementary minors as described below: *

11f in these formula we read Agfzn as the cofactor of the minor M%f, with the role of rows and columns interchanged and if

we use Einstein’s summation convention and generalized Kronecker delta, then these results can be concisely stated as:

1. Co-factor of a (2 X 2)-minor in a (4 X 4)-determinant,

pg Y2 Amn _ = cmnrs_ i _j
cof(MP4 ) = AT = o Spaiy aral.

2. Co-factor of a (2 X 2)-minor in a (5 X 5)-determinant,

A 1 .
pg y =2 mn _ mnrst I,k
cof(MEZ ) = A7L" = 3 Spas s Karaiay.

In each case the determinant is
mn Apqg _— Pq mn _ Pq
MPAPY = MPI AT = ASPT.

We may note that the generalized Kronecker delta has & superscripts and k& subscripts. These superscripts and subscripts
run from 1 to n and each set is alternating. If the superscripts are distinct from each other and the subscripts are the same set
of numbers as the superscripts, then the value of the generalized Kronecker delta is either +1 or —1 depending upon whether
an even or an odd permutation is required to rearrange the superscripts in the same order as the subscripts. In all other cases
the value of the generalized Kronecker delta is zero.



L 3 4
AlZ = (_1)(1+2)+(1+2)1\/[2f1 S Zg Zz ’ (38)
4 4
L 2 4
Al] = (-)HDFINM = | 05 (39)
4 4
L 2 3
Al = (_1)(1+2)+(1+4)M§2 -+ Zg Zg ’ (40)
4 4
—14 CLl CL4
A= (—1)(1+2)+(2+3)M34 =+ a? a% , (41)
—13 at al .
Af% — (_1)(1+2)+(2+4)1\/[34 - _ aif ag ’ (42)
4 4
L 1 2
AW = (~)OEEROREE = 4| % % (43)
4 4

Hence the expansion of the (4 x 4)-determinant in terms of all possible distinct (2 x 2)-minors of the first
and second rows gives us the value of the determinant

|Al= MIi2A1Z +MIZAL  +MIjAL
+M5AT  +Mi3AT

34 434
+M75A%;
_|ap af || a3 a3 aj af || a3 a3
T |ay d || af af ay a; || ai aj
aj aj || a3 a3 ai ai || a3 a3
+ al at a? a3 + a: a? al ot
2 2 a Qg 2 2 4 Q4
2 4 1 3 3 4 1 2
S DI R i S I e B I
b)
a3 Gy ay Gy as Gy ay ay
1.2 2 1 4 4 3 3 1N/ 2 4 4 2

= (a1a2 - ‘11%)(“3‘14 - ‘13“4) - (a%ag’ - alaz)(a3a4 - a3a4)
+(aay — ayay)(azal — a3a3) + (afas — aja3)(aza; — azay)
—(afay — ata3)(azai — a3ay) + (afa; — aya3)(azai — ajay). (44)

Hence, expansion of a (4 x4)-determinant has been reduced to the problem of 6 products of (2x2)x (2x2)-
determinants instead of four (3 x 3)-determinants. This method of expansion is due to Laplace.

Ezample 1. Given a (4 x 4)-determinant

Al =

Hs QO s =
N — W N
— N DN W
(S Y



find the value of |A| using (2 x 2)-minor blocks.
Using (;): 3! (2 x 2)-minors of the first and second rows, we find

|A|—12 2 4 1 3|1 4 1 4 (|1 2 2 3 3 4
Sla 3|13 Tla 2|2 3T e 1|2 1T 3 243
2 4 3 2 3 4 3 1
_‘31“41‘+‘21H42" (46)
[Al=3=-8)(6—-4)—(2—-12)(3=8)+ (1 —16)(1 —4)+ (4 — 9)(9 — 16)
—(2-12)(3-8)+ (3-28)(6 —4),
=—-5x2—-10xd54+15x34+5xT7T—-10x5—-5x 2,
= —(10 + 50 + 50 + 10) + (45 + 35),
= —120 4+ 70;
|A| = —50. (47)
In the next example we find the value of a (5 x 5)-determinant by using (2 x 2)-minors. The total number
of (2 x 2)-minors in this case is (g): 3‘?—;, = 10. Note that if instead of (2 x 2)-minors we use (3 x 3)-minors,

then also the total number of (3 x 3)-minors is 10, because Bernoulli coefficients have the symmetry property
(g):(g): 10, and thus no advantage is gained. In the case of (2 x 2)-minors the various combinations are

{12,13, 14, 15;23,24,25;34,35;45}.
When using (3 x 3)-minors the various distinct combinations are
{123,124,125,134, 135, 145; 234,235, 245; 345}.

However, expansion of the (5 x 5)-determinant in terms of (2 x 2)-minors is equivalent to expansion in terms
of the (3 x 3)-minors, because one is the complement of the other. Hence, it suffices to carry out expansion

in terms of (2 x 2)-minors.

Ezample 2. Given a (5 X 5)-determinant

|A| =

W N = Ot =
Tt = W = N
N = BN W W
— O = N
= Ot Ot = Ot

~

W

[o2e)

S’

find the value of |A| using (2 x 2)-minor blocks.
Using (2 x 2)-minors, the expansion is



2 1 5 31 5 3 2 5
|A|:Héi‘435—‘é§‘135+‘é3‘145
9 1 4 5 1 4 5 2 4
3 9 1
i)
5 2 1
, 41 5 49 5 409 1
+Hi§‘235—‘13‘245+‘i?‘243]
3 1 4 3 9 4 3 9 1
. 43 5 . 43 1
+H§§‘215—‘§i"213]
3 5 4 3 5 1
43 9
+‘;1‘;"214
3 5 2

Evaluating the (2 x 2)- and (3 x 3)-determinants which enter in the expansion above,we find

|A| = (=6) x (=2) — (—12) x (=28) + (=18) x (—30) — (—24) x 4
+(=6) x 0= (=12) x (=2) + (=18) x (=2) + (=6) x (-8)
— (=12) x (=28) + (=6) x (—34),
= 12— 336+ 540 + 96 + 0 — 24 + 36 + 48 — 336 + 204;
|A| = 240. (49)

Exercise 1 : Evaluate the following determinant first by using the (2 x 2)-minors of 3-rd and 4-th row
and then reevaluate it by using (2 x 2)-minors of 3-rd and 4-th column

Al = (50)

~1 &~ N

S 00 ~1 O

2 BEJCRT TN

B ot o
|

w

We now list without proof some of the important properties of determinants. Examples of these properties
are provided at the end of Exercises (see Section 5).

Property 1. Let a square matrix [A]7 be the transpose of [A]. Then
T
|[A"] = |A]. (51)
Property 2. For a triangular matrix of order n, the determinant is the product of its diagonal elements.

Property 3. If each element of a row (column) is multiplied by a constant C, the value of the determi-
nant 1s multiplied by this constant.

Property 4. Interchanging any two adjacent rows or columns changes the sign of the determinant.

10



Property 5. If any two rows or any two columns are identically equal, then the value of the determinant
is zero.

Property 6. If the determinant of a square matrix is zero, then the row vectors or column vectors are
not linearly independent.

Property 7. The product of the determinants of two square matrices is equal to the determinant of the
product of the two matrices; i.e., if A and B are two square matrices of the same order, then

|A| x |B| = |A x B]. (52)
Exercise : Verify the equality:
2 1 3 3 4 5 2 1 3 3 4 5
31 4|x|1 2 1]|= 31 4| x| 1 2 1]]. (53)
4 1 5 5 3 4 4 1 5 5 3 4

Determinants have many other useful properties. One can easily find these seven properties cited above
and many more in any good book in Linear Algebra?.

3 APPLICATIONS

In this section we give a few simple applications of determinants.

1. Let us assume that we are given three vectors A, B and C in three dimensional Cartesian space. The
absolute value of the volume subtended by these three vectors is

Ar Ay A,
V|=| B. B, B.|. (54)
C, Cy, C.

It is easy to verify that this is exactly the scalar product of vector A with the vector product B x C;
le.,

IV|=A (B xC). (55)

If the determinant is zero it means that the volume enclosed by the three vectors is zero. That implies
that the three vectors lie in the same plane; i.e., they are co-planar. In other words these three vectors
are not linearly independent; i.e., they are dependent.

We also note that in the case of dot-cross product
A(BxC)=B.(CxA)=C.(AxB)
=—A(CxB)=-B.(AxC)=-C.(BxA). (56)

Similar transpositions can also be carried out in the case of determinants. Interchanging any two rows
or any two columns leads to a change of sign of the determinant. Thus,

A, A, A, B, B, B, B, B, B,
B; By B, |=(-)| A A, A, |=(=)*| Cs C, C, |, etc. (57)
Co Cy C, C, C, C, Ay Ay A,

2Hoffman, K. and R.Kunze, Linear Algebra, Prentice-Hall, Inc., Englewood Cliffs, NJ (1961)
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2. Consider two vectors A and B in the zy-plane. Their components are (A5, A4,) and (B, By). The

absolute value of the area of the parallelogram formed by these two vectors is

_| A Ay
|Area| = ‘ B B (58)
3. Area of a triangle:
Let the coordinates of three points in a plane be
A (z1,y1), B: (22,92), C: (23,¥3)
x,¥,) |
A |
kX))
In terms of vectors U and V we have
U=($2—l‘1,y2—y1),V:(IS_l‘l,ya—m) (59)
The absolute value of the area of the triangle ABC can now be written as
1 oy _
|A| _ - (:EZ :Ll) (y2 yl) ’ (60)

2| (3 —x1) (y3—w1)

where the multiplicative factor 1/2 is necessary because we are interested in the area of a triangle and
not of the parallelogram ABCD. If we expand this (2 x 2)-determinant, we get

1
|A| = 5[(1‘2 - 931)(343 - y1) - (Is - I1)(y2 - y1)],

1

= E[I2y3 — Zay1 — T1Ys + T1y1 — T3y2 + T1Y2 + T3y — z1y1],
1

= Sl(22ys — 23y2) — (2195 — apn) + (21y2 — z291)];
1 1 1 1

= E X1 9 3 . (61)

i Y2 Y3

12



Thus, the area of a triangle in zy-plane can also be written in terms of a (3 x 3)-determinant.

If the points (z1,y1), (#2,y2), (z3,y3) lie on the same line then the area of the triangle whose three
vertices lie on these points is zero. Therefore

1 1 1
X1 ry I3 =0. (62)
Y Y2 Y3

This is the equation of a straight line passing through the three given points.

Using determinants, we can also write the equations of various geometrical objects. As an example the
equation of a circle passing through three given points (z1,41), (22,¥2), (23, ys) can be written in terms of
a (4 x 4)-determinant. Similarly, in three-dimensional space we can write the equation of a plane passing
through three given points (a1, as, as), (b1, b2, b3) and (c1, 2, ¢3) by using a (4 x 4)-determinant:

1 1 1 1
r as dads

=0 63
y b by b3 ( )

z C1 (2] C3

13



4 EXERCISES

1. Evaluate the following (2 x 2)-determinants:

@ |35

o |3 3]

(c) (nil) (n;ll—l) ‘,

(d) Cosgjlismg cos@—lisinﬁ " i=v-1.

2. Evaluate the following (3 x 3)-determinants:

2 1 3
(a) | 1 4 3],

5 3 2

4 2 -1
®) |5 3 —2 |

3 2 1

1 1 1
()| 5 7 91

52 72 92

2 0 3
@ |7 1 6

6 0 5

3. Evaluate the following (4 x 4)-determinants, using (2 x 2)-minors:

5 2 1 7
300 2

@17 3 4 5/
40 3 7
113 4
2 1 1 8

M) 13 11 9
4 4 7 8

4. Evaluate the following (5 x 5)-determinant, using (2 x 2)-minors of the

(a) 1-st and 2-nd row,
(b) 3-rd and 4-th row,
(¢) 2-nd and 3-rd column,
(d) 4-th and 5-th column:

-2 5 0 -1 3

1 0 3 7T =2

A= 3 -1 0 5 =5
2 6 —4 T2

0 -3 -1 2 3

14



10.
11.
12.
13.

14.

The numbers 20604, 53227, 25755, 20927 and 78421 are all divisible by 17. Show that the determinant

>

[l
NECECREEY
=R =)
PN IS I CIEON
)
— =1 Ot =

is also divisible by 17.
In a determinant of order four, write all the terms which contain the factor a3

(a) and have a positive sign,
b) and have a negative sign.
g g

In a (3 x 3)-determinant, show that if the three columns are linearly dependent, then the three rows
are also linearly dependent.

Find the co-factor of each element of the given matrix

2 3
@] 3

2

4
(b) | O
1 1

W N O

Derive Property 2.
Derive Property 4.
Derive Property 5.
Derive Property 7.
Find the numbers of inversions in the following permutations:

(a) (6,3,1,2,5,4)

(b) (1,9,6,3,2,5,4,7,8)
(c) (7,5,6,4,1,3,2)

(d) (2,4,6,8,10,1,3,5,7,9)
(e) (1,3,5,7,9,2,4,6,8,10)

Consider the (5 x 5)-determinant shown in the figure below:

a; az az a4 Gas
bi by bz ba bs
A = C1 C2 C3 C4 Cy
di dy dz da ds

€1 €3 €3 €4 €5

Which of the following combinations actually occur in the expansion of the determinant and with what
sign?

(a) d3b1 C509€4,
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(b) b1 Czdg(ll €4,

(C) (12])361 d5€4.

Choose the indices m and n so that in the expansion of the determinant the following terms appear
with a positive sign:

(a) asbpycpdser,

(b) b3dm6na161 .

15. Show that if a, b and ¢ are real, then the roots of the equation

a—=zx b
b c—zx | 0,
are also real.
16. Evaluate the determinant
(a)
a+ib c+1id . ]
‘ —etid a—ib ‘,Wherez_\/—l ;
(b)
1 0 1+4:
1 ) ;
1—17 —1 1

cosa  sinacosf  sinasinf
—sina  cosacosf  cosasing

—sinf cosf?
5 PROPERTIES

Properties of determinants listed elsewhere in these notes are illustrated here with the help of examples.
Proof of these and many other properties can be found in books of linear algebra.
Property 1

1 3 5
[Al=12 1 4 |=1x(-5)—3%x104+5x5=-10; (64)
1 3 7
1 21
AT=[3 1 3 =1x(-5)—2x6+1x7=-10. (65)
5 4 7
Property 2
1 0 0
2 3 0|=1x3x5. (66)
3 4 5

16



Property 3

1 3 5 1 3 5
4 2 8|=2{2 1 4|=2x(-10)=-20.
1 3 7 1 3 7
Property 4
1 3 5 2 1 4 1 2 4
2 1 4|=—=|1 3 5|=(-D*3 1 5|=-10.
1 3 7 1 3 7 3 1 7
Property 5
1 2 4 1 2 4
2 4 8 |=21 2 4 |=
3 5 2 3 5 2
2[1(4—20)—2(2—-12)4+4(b—6)] = 2[-16 + 20 — 4] =
Property 6
a b ¢
2¢ 2b 2¢ | =0,
r s t

because {2a,2b,2¢} = 2{a, b, c}.
Property 7

ap +br aq+ bs
ep+dr cq+ds
= (ap + br)(cq + ds) — (aq + bs)(cp + dr) ,

= apcq + apds + breq + brds — aqep — aqdr — bsep — bsdr |

= (apds — aqdr) — (bscp — breq) = ad(ps — qr) — be(sp — rq) ,
= (ad — be)(ps — qr) ,

a b P q
d r s

)

—
o
QL o
| I |
| — |
S 3
tn K
| I |
Il

X

It is true in general for any two (n x n)-determinants.

17
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CRAMER’S RULE

For a System of Simultaneous Equations

We have introduced the concept of a determinant and we have also explained some of its basic properties
with the help of examples. We next consider the application of these concepts to the solution of a system of
linear equations.

We first make the following assumptions:

1. The system of linear equations are non-homogeneous, i.e. they are of the form
a-x=Db,

where the vector b on the right-hand side of the equation is a non-trivial vector such that the scalar

product b-b # 0.

2. The system of linear equations form a consistent set so that a non-trivial solution x exists and 1s
unique. This implies that we assume that the linear equations are linearly independent, which requires
that the determinant of the dyadic coefficients |al, | # 0.

To find the solution of a system of linear equations we make use of an important property of co-factors
which we have listed earlier. According to this property, if A7* is the co-factor of the dyadic element af*,
then using column (or row) expansions, we have

1. zn: a;nA;n = A(SZ']',
m=1

2. ) b, Al = A8,
m=1
where 6% (6;;) are Kronecker deltas defined as

69 =1 fori=j,

=0 fori#j,
6Z'j =1 fOTin,
=0 fori#j.
We thus see that when the subscript ij = 11,22,33,--- ,nn
atAl + d?A2 4+ a3A3 + - 4+ afA} = A,
aAl  + a2A2 + a3A3 + - + a§AT = A,
alt Al + a2A2 4+ a3A3 4+ .. 4+ a?A? = A,
and when ij = 12,13,---,1n;21,23,---,2n;31,32,34, -, 3n; etc., etc.
atAl + a?Al + d3A3 + .. + AT = 0,
ajAy + afA3 + alA3 + -+ dfA} = 0,
alAl + a2A? + a3A? + ..+ aBA? = 0,
ayAy + a3A3 + a3AT + -+ afA} = 0,
aj Ay, + dlAl o+ A} + o+ aPAR = 0, (I#£k).
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A similar set of equations can also be written for the second case when ij are distinct superscripts.

We now show that use of this fundamental property helps us to determine a unique solution of a system
of linear equations.
1. Consider the case of two equations in two unknowns:

1 2 1
ajxy + ajes = b,

asxy + azxs = b2

We assume that these two equations are linearly independent. This requires that the determinant of the
coefficients |a}| # 0. We now proceed to find the non-trivial values of the two unknowns {z1, z2}.

To find the value of the unknown x;, we multiply the first equation by the cof(a%) = Al and the second
equation by cof(a%) = Al. We thus obtain the two equations:

141, 241, _ 1141
ayAjzr + ajAjzs = b Aq,

as Az, 4+ a2 Alzy, = b2 AL
Adding the two equations we find
(al AL+ abAL) wo + (a2A] + aZAD) g = (5141 4 5241) .

This 1s written in the form

2 2 2

vy ap Al sy an Al =S bTAL,

m=1 m=1 m=1

or equivalently
2
1 (A8") + 2y (A671) = Y b"AL
m=1
Since 62! = 0 and 6" = 1, this leads to the solution
2
A = ) AL,
m=1
= bAl + 0241
= bt cof(a%) + b2 cof(a%) ,

—  plg2 32,2
= baz —b°ay,

12
b2 a})
b aj

We now determine the unknown zs. To find this we multiply the first equation by cof(a%) = A? and the
second by the cof(a%) = AZ. We obtain the two equations:

142 2 42 142
a; ATz + a7 Ajxzs = b A7,
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ay Az 4+ a2 A2z, = b2 A2
Adding the two equations we get
(LA + abA2) ws + (a2A2 + aZAZ) g = (51 A2 + b2A2) .

We write it in the form

or equivalently
21 (A8'2) + 25 (A67%) Z b A2,

Since §'2 = 0 and 62 = 1, we are lead to the solution

2

zA = Y bmAL,

m=1

2
= Z b"cof(aZ,)
m=1

= b caf(a%) + b2 cof(a%) ,
= b (—a%) + b2a%,

1 1
o0
as; b

We thus find that the solution of the system of two equations in two unknown in terms of (2 x 2)-
determinants is given by

A bt a%

r1 =

1 b2 CL% 3
al bt

A(L‘Q: 1 b2 .
as

We now invoke our second assumption which requires that the determinant A # 0. Since

1,2

a; a

—| & @

A= (11 [12 3& 01
2 @3
the solution is unique and is given by
bt a?
b2 a?
1 = T 7 A ;é 0

a; a4y
ay a3



1 g1
‘alb

1 32

o — as b

L2 — 3
1 2
ay ax
ay aj

We still have to show that the solution exist. For this we have to show that if the solution exists and
is given by the expression above, then when substituted in the original two equations we must have the

1dentities

1 2, —pl
ajx1+ajra =47

a%:pl + a%xz =2

Thus if we substitute the value of z; and x5 in the first equation we get

bl a?

1 bl
1 aj
b2 a% ‘ +a

al b2

1
z{‘*

a% a3 —07ay
{ (bl 2 b2 2

}

+ a% (a%b2 — a%bl)} ,

=

o=

—

)
{b1 (a%a% — a%a%) + b2 (a%a% — a%a%)} ,
=3 {b1 (a%a% — a2a1)

=p!

: 1,2 1.2y —
since (a1a2 — a2a1) = A

Now substitute the value of 1 and x5 in the second equation and we get

% {a% (blag — b2a%) + a% (a%b2 — a%bl)}
{b1 (a%a% - a%a%) + b2 (a%a% - a%a%)} ,
{b2 (a%a% — a%a%)} ,

: 1.2 1.2\ —
since (a1a2 — azal) = A.

|
S

[

= b2

Thus the quantities 21 and z5 actually represent a solution of the system. We have thus found a procedure
for finding the solution which is called Cramer’s rule. For finding the solution we thus need to find three
determinants A, A; and As, where

Then the unique solution is

12
_ | @ a3
A= al a? ‘7&0’
bl a?
Al:‘ b2 aé ‘a
1 1
_|a b
=] o b
Am
xmzj,mzl,QandAyéO.
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Thus by using Cramer’s rule the process of finding the solution of a system of two linear equations has
been reduced to finding the quotient of determinants. This procedure is due to CRAMER.
The result

1 2

Aml = b2 a% 3
b aj
al bt

AIQ = 2 2 b
ai b

requires further examination. These two equations are valid whether or not the determinant A is zero or
not. When A # 0, the solution is unique because to determine z; and 22, we can divide by nonzero value of
A. On the other hand if the determinant A = 0, the system can have a non-trivial solution only when both
the determinants on the right-hand side are zero.

Ezample 1. Using Cramer’s rule, find the solution of the system of equations

3z —bdy = 14,
r+2y = 3.

The determinant of the dyadic coefficients is

—5
L ‘_117&0.

N
Il
(%)

Hence the non-trivial unique solution is

1‘14 -5 ‘_14><2+5><3_43

1113 2 11 TR
C1]3 14| 3x3-1x14 5
Y=T11l1 31|~ 11 TS

2. We next consider the case of three equations in three unknowns {z1,zs, z3}. The three equations are:
a%xl + a%xz + a?mg =b',
atzy + alzy + adxy = b2,
aixi + alzs + adzy = b3,
where we assume that Det[ag] = A # 0. Conceptually this problem is very similar to the last problem in
two-dimensional space and to avoid repetition, we skip some of the details. Thus to find the unknown 1,

we multiply the first equation by A}, the second equation by Al, the third equation by Al and then add the
three equations. This leads to us to the equation

1 (a%A% + a%A% + aéAé)
+ x5 (a%A% + a%A% + a%Aé)
+ z3 (a?A% + ag’Aé + agAé)

= (bTA] + b2AL + b3A]).
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Use of the fundamental property of co-factors, tells us that:
at A + a3 AL + ajAL = A,
atAl + a3 Al + a3 AL =0,
a3 Al + a3 AL + a3AL = 0.
Hence, we find

A(L‘l

LA 4 b2 AL + b3 AL,

blcof(a%) + b%of(a%) + bBCof(a:l,)) ,

2 3 2 3 2 3
— ! @y Ay _ 2 ar aj + 3 ay aj
= a2 a3 a2 a3 a2 a3l

3 a3 3 Q3 2 Q3
1 .2 3
b2 a}) aé
= b3 ag a% ,
b ai a3
where
1 .2 3
ap ay aj
A= a% a% a‘;’
1 2 3
az az as

To find the unknown zs, we multiply the first equation by A?  second equation by A% and the the third
equation by AZ. Then we add the three equations and we obtain

z1 (a%A% + a%A% + a:l,)A?,))

_|_

_|_

9 (a%A% + a%A% + a%Ag)
3 (ai’A% + a‘;’Ag + agAg)

bLAT 4+ b2AZ 4+ b3 A% .

In this equation the coefficient of 1 and the coefficient of x3 are both identically zero, and the coefficient
of x5 1s the non-trivial determinant A. We are thus lead to

zoA = +bTAZ 4 b2AZ 4 B3A2
1.3 1 1.3
- _p @y Ay b2 ay ap _ 3 arp a
= +
i3 1.3 1 .3 |
az as az as ay ay
1 31 3
a% b? aé
= a% b; a%
az b° a3
One can similarly show that
al a? bt
r3A =1 al a2 b?
i 2 33
az a3z b



Thus using Cramer’s rule, the solution in terms of the ratio of determinants is

1 2 3
T B
T1= b* az ay |,

b 4?2 o

3 a3

1 al b a3
Tg = — a% b2 a‘;’ ,

A ay b ad

3 3

1 al a? bt

_ 1 .2 72
T3 = 7| a3 b |,

al a2 b

3 03

where the determinant A # 0.
3. Consider next the case of four equations in four unknowns {1, 2, 23, 24}. The four equations are

atzy +alxs + alrs + atry = b,
a%ml + (1%.1‘2 + ag’:cg + a‘;‘x4 = b2,
aixi + aizs + adrs + ajry = b3,
aixi +alzs + adzs + ajry = b,

where we assume that Det af =A#0.

Without further ado, using Cramer’s rule the solution in terms of the ratio of determinants is

1 .2 3
b* ai ay aj
1] 8?2 a2 a3 a}
1 = — 3 i 5 4 |y
ApT s o g
b* ay ay aj
a} bt a? a?
1| al 2 a3 ai
T2 = —| 1 33 3 _4 |
Al v o o
ag; b ay aj
al a? b a}
1| al a2 b? ai
L3 = —| 1 2 3 4 |
Al gy o V0
ay; az b aj
a} a% a? bt
1| al a2 a3 b2
Ty = —| 1 2 3 13
Al g o as b
ag; ay ay b

We now state the general result for n linear equations in n unknowns.



THEOREM. Consider a system of n linear equations in n unknowns:
atey +alrg+ -+ afz, = b,
adey +ades + -+ alz, = b2,

1, 2, n, _in
a,xi +a;xs + +ajx, =07,

and let
1 2 n
al al o .. al
a% a% o .. ag
. =A#£0.
1 2 n
an an e an

Then there exists a unique solution, which in terms of the ratio of two (n x n)-determinants can be written
in the form

1 2 1 n
al al e b e al
a% a% e b2 e ag
1 2 n n
a, a. b an )
Tk =171 3 % ) k=1,2,---,n
ay aj ay aj
ay a3 af aj
1 2 k n
an an e an e an

When the solution is written in this form, it is called the Cramer’s form in terms of determinants.

Example 2. Consider the system of equations

2;15‘1 + 2.132 — X3 = 2,
—3;15‘1 — X9 + 313 = —2,

4;15‘1 + 2.132 - 313 = 0.
The determinant of the coefficient 1s
2 2 -1
-3 -1 3 |=2.
4 2 =3

Therefore using Cramer’s rule, the solution is

2 2 -1
1‘1:% -2 -1 3 :—%:—7,

0 2 =3

2 2 -1

1 10

I‘QZE -3 -2 3 :725,

4 0 -3

2 2 2 ‘
Igzé -3 -1 -2 :—%:—6.

4 2 0




Exercises: Using determinants find the solution of the equations

(a)

4r —3y+2244=0,
6r —2y+32+1=0,
o —3y+22+3=0.

(b)

2z + 3y + 5z = 10,
3z +Ty+4z = 3,
x4+ 2y+2z=3.

()

r+y+z=a,
r4+ey+ez=2=b,
x+62y+62z:c,

where € = %(—1:}:2'\/5),63 =1.

(d)
12 3 4 5 x 13
2 1 2 3 4 Zy 10
2 21 2 3 z3 | = 11
2 2 2 1 2 T4 6
2 2 2 2 1 x5 3

Use (2 x 2)-minors to find the expansion of determinants which enter in the solution of this problem .
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