MATRIX ALGEBRA

A matrix is a rectangular array of numbers. The numbers in the array are called entries in the matrix. The order or dimension or size of a matrix is described by specifying the number of rows and the number of columns.
$A=\left[\begin{array}{ll}1 & 2 \\ 3 & 0 \\ -1 & 4\end{array}\right] \quad$ Here A is a matrix of order 3×2, ie, 3 rows and 2 columns.
$\left[\begin{array}{llll}2 & 1 & 0 & -3\end{array}\right]$ is a (1×4) - matrix.
Let $A=\left[\begin{array}{llll}a_{11} & a_{12} & \ldots & a_{1 n} \\ a_{21} & a_{22} & \ldots & a_{2 n} \\ \ldots & \ldots & \ldots & \ldots \\ \ldots & \ldots & \ldots & \ldots \\ a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right]$
Here A is a matrix of order $\mathbf{m} \times \mathbf{n}$. If $m=n$, then we say that A is a square matrix. Thus a square matrix is a matrix with equal numbers of columns and rows.
Notation: We write $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{mxn}}$ or simply $\left[\mathrm{a}_{\mathrm{ij}}\right]$.
a_{ij} - is the entry (or element) in row i and column j .
Row vector: a matrix of order $1 \times \mathrm{n}$
Column vector: a matrix of order $\mathrm{m} \times 1$.
Eg: $\left.\begin{array}{lllll}5 & 0 & 2 & 5 & -1\end{array}\right] ;\left[\begin{array}{r}5 \\ 2 \\ 3 \\ -4\end{array}\right] \quad 4 \times 1$

- A zero matrix is a matrix whose entries are all zero.

$$
\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right] \text { Zero matrix of order } 3 \times 2
$$

- Two matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are equal if they have the same order and the corresponding entries are equal. Notation: $\mathbf{A}=\mathbf{B}$.
- Consider $\mathrm{A}=\left[\begin{array}{ll}2 & 1 \\ 3 & \mathrm{x}\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}2 & 1 \\ 3 & 5\end{array}\right]$ and $\mathrm{C}=\left[\begin{array}{lll}2 & 1 & 0 \\ 3 & 4 & 0\end{array}\right]$. If $\mathrm{x}=5$ then $\mathrm{A}=\mathrm{B}$. For all other values of $\mathrm{x}, \mathrm{A} \neq \mathrm{B}$. A and C have different sizes. Therefore they are not equal matrices.

MATRIX OPERATIONS (§ 8.5)

THE SUM OF MATRICES

Suppose A and B are matrices of order $m \times n$. Let $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$.
The $\operatorname{sum} \mathrm{A}+\mathrm{B}$ is a matrix obtained by adding the corresponding entries.
Therefore, $\mathrm{A}+\mathrm{B}=\mathrm{C}=\left[\mathrm{c}_{\mathrm{ij}}\right]$ where $\mathrm{c}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{ij}}+\mathrm{b}_{\mathrm{ij}}$

- The order of $A+B$ is also $m \times n$.
- Two matrices cannot be added if their sizes are not the same.

Exercise: Read the examples from the text .

MULTIPLICATION BY A SCALAR

Suppose $\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]$ is an $\mathrm{m} \times \mathrm{n}$ matrix. Let k be a real number (scalar) then $\mathbf{k A}$ is a matrix whose $(\mathrm{i}, \mathrm{j})^{\text {th }}$ element is $k a_{i j}$

Example:

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
2 & 3 & 4 \\
1 & -3 & 1
\end{array}\right] \\
& 3 A=\left[\begin{array}{ccc}
6 & 9 & 12 \\
3 & -9 & 3
\end{array}\right] \\
& (-1) A=\left[\begin{array}{ccc}
-2 & -3 & -4 \\
-1 & 3 & -1
\end{array}\right] \\
& 1 / 2 A=\left[\begin{array}{lll}
1 & 3 / 2 & 2 \\
1 / 2 & -3 / 2 & 1 / 2
\end{array}\right]
\end{aligned}
$$

NOTATION: -A means (-1)A
A-B means A + (-1)B

MATRIX MULTIPLICATION

Suppose $A=\left[a_{i j}\right]$ is an $m \times n$ matrix and $B=\left[b_{i j}\right]$ is an $n \times p$ matrix.
The product $\mathbf{A B}$ is defined as a matrix $\mathrm{C}=\left[\mathrm{c}_{\mathrm{ij}}\right]$ of order $\mathrm{m} \times \mathrm{p}$ where $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$

- The $(\mathrm{i}, \mathrm{j})^{\text {th }}$ - entry of the matrix $\mathrm{C}(=\mathrm{AB})$ is computed using the $\mathrm{i}^{\text {th }}$ row

$$
\left[\begin{array}{llll}
a_{i 1} & a_{i 2} & \ldots & a_{i n}
\end{array}\right] \text { of } A \text { and the } j^{\text {th }} \text { column }\left[\begin{array}{l}
b_{1 j} \\
b_{2 j} \\
\ldots \\
b_{n j}
\end{array}\right] \text { of B. }
$$

- The product $A B$ of two matrices A and B is only defined if the number of columns in $A=$ the number of rows in B.

- The order of $A B$ is $m \times p$.

Example

Suppose $A=\left[\begin{array}{lll}1 & 2 & 4 \\ 2 & 6 & 0\end{array}\right]$ and $B=\left[\begin{array}{rrrr}4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2\end{array}\right]$
A is a 2×3 matrix; B is a 3×4 matrix. Therefore $A B$ is a 2×4 matrix.

$$
A B=\left[\begin{array}{lll}
1 & 2 & 4 \\
2 & 6 & 0
\end{array}\right]\left[\begin{array}{cccc}
4 & 1 & 4 & 3 \\
0 & -1 & 3 & 1 \\
2 & 7 & 5 & 2
\end{array}\right]=\left[\begin{array}{cccc}
. & \cdot & \cdot & \cdot \\
. & \cdot & 26 & .
\end{array}\right]
$$

The (2,3)-entry $=(2 \times 4)+(6 \times 3)+(0 \times 5)=26$.

The entry in row 1 and column 4 of $A B$ is given by
$(1 \times 3)+(2 \times 1)+(4 \times 2)=13$ etc.
Thus AB $=\left[\begin{array}{rrrr}12 & 27 & 30 & 13 \\ 8 & -4 & 26 & 12\end{array}\right]$ (Verify). Here BA is not defined
Remark: Even when $A B$ and $B A$ are both defined for matrices A and B, they need not be equal.

For example, $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right] \quad B=\left[\begin{array}{cc}2 & -1 \\ 3 & 0\end{array}\right] \quad A B=\left[\begin{array}{ll}14 & -1 \\ 13 & -2\end{array}\right]$ and $B A=\left[\begin{array}{cc}0 & 5 \\ 3 & 12\end{array}\right]$

PROPERTIES OF MATRIX OPERATIONS

Assume that the orders of the matrices are such that the following operations are defined.

1. $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$ (addition is commutative)
2. $A+(B+C)=(A+B)+C$ (addition is associative)
3. $\quad \mathrm{A}(\mathrm{BC})=(\mathrm{AB}) \mathrm{C}$ (multiplication is associative)
4. $(A+B) C=A C+B C$ (distributive)
5. $k(A+B)=k A=k B$
etc.

Read the text; pp 661-666

TRANSPOSE OF A MATRIX

Suppose $A=\left[a_{i j}\right]$ is an mxn matrix. Then the transpose A^{T} of A is the $n \times m$ matrix defined as

$$
\begin{gathered}
\mathrm{A}^{\mathrm{T}}=\left[\mathrm{a}^{\prime}{ }_{i j}\right] \text { where } \\
\left.\mathrm{a}^{\prime}{ }_{i j}=\mathrm{a}_{\mathrm{ji}} \text { (the }(\mathrm{i}, \mathrm{j}) \text {-entry of } \mathrm{A}^{\mathrm{T}} \text { is the (j,i)-entry of } \mathrm{A}\right)
\end{gathered}
$$

i.e. the rows of A^{T} are the columns of A .
e.g. Let $A=\left[\begin{array}{lll}2 & 3 & 1 \\ 4 & 2 & 3\end{array}\right]$ be a (2×3)-matrix. Then

$$
A^{T}=\left[\begin{array}{ll}
2 & 4 \\
3 & 2 \\
1 & 3
\end{array}\right] . \text { Its dimension is } 3 \times 2 \text {, i.e., it has } 3 \text { rows and } 2 \text { columns. }
$$

Def: A square matrix A is said to be a symmetric matrix if $\mathbf{A}^{T}=\mathbf{A}$, and a skewsymmetric matrix if $A^{T}=-A$.

PROPERTIES OF THE TRANSPOSE

(a) $\left(\mathrm{A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A}$
(b) $(A+B)^{T}=A^{T}+B^{T}$
(c) $\quad(k A)^{T}=k A^{T}$, for any scalar k
(d) $(A B)^{T}=B^{T} A^{T}$

Proof of (d): Suppose $A=\left[a_{i j}\right]_{m \times n}, B=\left[b_{i j}\right]_{n \times p}$ and $C=\left[c_{i j}\right]_{m \times p}$ such that $C=A B$. Then $\mathrm{c}_{\mathrm{ij}}=\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ik}} \mathrm{b}_{\mathrm{kj}}$.
$\mathrm{C}^{\mathrm{T}}=\left[\mathrm{c}_{\mathrm{ij}}\right]$ where $\mathrm{c}_{\mathrm{ij}}=\mathrm{c}_{\mathrm{j} i}$. The (i, j) entry in $\mathrm{C}^{\mathrm{T}}=\mathrm{c}_{\mathrm{ij}}=c_{j i}=\sum_{k=1}^{n} a_{j k} b_{k i}$.

Now the (i,j) entry in $B^{T} A^{T}=\sum_{k=1}^{n} b_{i k}^{\prime} a_{k j}^{\prime}$

$$
\begin{aligned}
& =\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{~b}_{\mathrm{ki}} \mathrm{a}_{\mathrm{jk}} \\
& =(\mathrm{i}, \mathrm{j}) \text { entry in } \mathrm{C}^{\mathrm{T}} .
\end{aligned}
$$

$\therefore \mathrm{C}^{\mathrm{T}}=\mathrm{B}^{\mathrm{T}} \mathrm{A}^{\mathrm{T}}$
i.e. $(A B)^{T}=B^{T} A^{T}$.

Definition: Suppose A is a square matrix. (i.e. number of rows of A = number of columns of $\mathrm{A}=\mathrm{n}$, say).
$\mathrm{A}=\left[\mathrm{a}_{\mathrm{ij}}\right]_{\mathrm{n} \times \mathrm{n}}$
The entries $a_{11}, a_{22}, \ldots, a_{n n}$ are said to be on the main diagonal of \mathbf{A}.

Notation: $A^{2}=A \cdot A$

$$
\mathrm{A}^{\mathrm{m}}=\underbrace{\mathrm{A} \cdot \mathrm{~A} \ldots \mathrm{~A}}_{\mathrm{m} \text { factors }}
$$

Definition: An identity matrix is a square matrix with 1 's on the main diagonal and 0's elsewhere.

- $\quad \mathbf{I}_{\mathrm{n}}$: identity matrix of order $\mathrm{n} \times \mathrm{n}$.
- $I_{3}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ and $I_{2}=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

Theorem: For any $m \times n$ matrix A, we have $A I_{n}=I_{m} A=A$.

Definition: Suppose A and B are square matrices.

If $\mathrm{AB}=\mathrm{BA}=\mathrm{I}$, the identity matrix, then A is said to be invertible and B is called an inverse of A.

Note: If B is an inverse of A, then B is invertible and A is an inverse of B.

Example:

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
2 & -5 \\
-1 & 3
\end{array}\right] \\
& B=\left[\begin{array}{ll}
3 & 5 \\
1 & 2
\end{array}\right] \\
& A B=\left[\begin{array}{cc}
2 & -5 \\
-1 & 3
\end{array}\right]\left[\begin{array}{ll}
3 & 5 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
6-5 & 10-10 \\
-3+3 & -5+6
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \mathrm{BA}=\left[\begin{array}{ll}
3 & 5 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & -5 \\
-1 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

Here A, B are invertible.

Note that not all matrices are invertible.
Suppose $A=\left[\begin{array}{lll}1 & 4 & 0 \\ 2 & 5 & 0 \\ 3 & 6 & 0\end{array}\right]$.

We will show that \mathbf{A} is not invertible.

Suppose $B=\left[\begin{array}{lll}b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33}\end{array}\right]$ is a 3×3 matrix. Consider BA. It is easy to check that the $3^{\text {rd }}$ column of BA is $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right] . \therefore \mathrm{BA} \neq \mathrm{I}$.
Thus there is no matrix B such that $B A=I$. Hence the matrix A is not invertible.

THEOREM 1: If a matrix is invertible then its inverse is unique.

Proof: Suppose A is invertible. Let B and C be inverses of A.
$\therefore \quad \mathrm{AB}=\mathrm{BA}=\mathrm{I}$
and

$$
\begin{equation*}
\mathrm{AC}=\mathrm{CA}=\mathrm{I} \tag{1}
\end{equation*}
$$

We will show that $B=C$.
Since AB = I,
$\mathrm{C}(\mathrm{AB})=\mathrm{CI}=\mathrm{C}$
But

$$
\begin{equation*}
C(A B)=(C A) B=I B=B \tag{3}
\end{equation*}
$$

From (3) and (4) we have B = C.
\therefore The inverse of A is unique.
NOTATION: The inverse of A is denoted as A^{-1}.
Therefore $\mathrm{AA}^{-1}=\mathrm{A}^{-1} \mathrm{~A}=\mathrm{I}$.
Note that the inverse of A^{-1} is A , that is, $\left(\mathrm{A}^{-1}\right)^{-1}=\mathrm{A}$.
Result: If A and B are invertible matrices of the same order then the inverse of $A B$ is $\mathrm{B}^{-1} \mathrm{~A}^{-1}$.

Proof: $(A B)\left(B^{-1} A^{-1}\right)=A\left(B B^{-1}\right) A^{-1}$

$$
=(\mathrm{AI}) \mathrm{A}^{-1}
$$

$$
=\mathrm{A} \mathrm{~A}^{-1}=\mathrm{I}
$$

Similarly we can show that $\left(\mathrm{B}^{-1} \mathrm{~A}^{-1}\right)(\mathrm{AB})=\mathrm{I}$.
Therefore, $A B$ is invertible and $(A B)^{-1}=B^{-1} A^{-1}$.

SYSTEMS OF LINEAR EQUATIONS (§ 8.4)

The equation

$$
\begin{equation*}
\alpha_{1} x_{1}+\alpha_{2} x_{2}+\ldots+\alpha_{n} x_{n}=\beta \tag{*}
\end{equation*}
$$

is a linear equation in n variables $\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots, \mathrm{x}_{\mathrm{n}}$.
Here α_{i} 's and β are real numbers.
A collection of linear equations in $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ is referred to as a system of linear equations. For example,

$$
\begin{aligned}
& 2 x_{1}+3 x_{2}+5 x_{3}=7 \\
& 4 x_{1}+x_{2}-3 x_{3}=6
\end{aligned}
$$

is a system of two equations in three variables (unknowns) x_{1}, x_{2} and x_{3}.
A sequence of numbers $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}}$ is a solution to the system (*) if

$$
\alpha_{1} s_{1}+\alpha_{2} s_{2}+\ldots+\alpha_{n} s_{n}=\beta
$$

Example: Consider the system of equations:

$$
\begin{gathered}
x+y+z=3 \\
2 x+y+3 z=1
\end{gathered}
$$

Clearly $\left.\begin{array}{c}\mathrm{x}=-2 \\ \mathrm{y}=5 \\ \mathrm{z}=0\end{array}\right\} \quad$ and $\left.\quad \begin{array}{c}\mathrm{x}=0 \\ \mathrm{y}=4 \\ \mathrm{z}=-1\end{array}\right\} \quad$ are solutions to the above system.
Consider the system

$$
\begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}= & b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}= & b_{2} \\
\vdots & \vdots & \vdots \tag{1}\\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}= & b_{m}
\end{array}
$$

This system is constructed using the rectangular array

$$
\left[\begin{array}{cccc|c}
\mathrm{a}_{11} & \mathrm{a}_{12} & \ldots & \mathrm{a}_{1 \mathrm{n}} & \mathrm{~b}_{1} \\
\mathrm{a}_{21} & \mathrm{a}_{22} & \ldots & \mathrm{a}_{2 \mathrm{n}} & \mathrm{~b}_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
\mathrm{a}_{\mathrm{m} 1} & \mathrm{a}_{\mathrm{m} 2} & \ldots & \mathrm{a}_{\mathrm{mn}} & \mathrm{~b}_{\mathrm{n}}
\end{array}\right]
$$

This $\mathrm{m} \times(\mathrm{n}+1)$-matrix is called the augmented matrix for the system (1). To solve the system (1) we eliminate the variables.

Example: Solve the system given below:

$$
\begin{align*}
2 x+y-2 z & =10 \tag{1}\\
3 x+2 y+2 z & =1 \tag{2}\\
5 x+4 y+3 z & =4 \tag{3}
\end{align*}
$$

ELEMENTARY ROW OPERATIONS (e.r.o.) (§ 8.4)

An elementary row operation (e.r.o) is an operation performed on the rows of a matrix and is one of 3 types.

1. Multiply a row by a non-zero constant;
2. Interchange any two rows;
3. Add a multiple of one row to another row.

By these operations we can transform the given matrix into the so called row echelon form. To solve a system of equations we transform the augmented matrix into row echelon form. This form facilitates the solving for the unknown variables.

DEFINITION:

- The leading entry of a row in a matrix is the first non-zero entry in the row.
- A matrix is in row-echelon form if the leading entry in each row (except the first) is to the right of the leading entry of the preceding row. The leading entry in each row is 1 . All rows consisting of zeros are at the bottom of the matrix.
- A matrix is in reduced row echelon form if, in addition, every number above and below each leading entry is a 0 .

Examples: Consider the matrices given below: The first one is in row echelon form; the second matrix is in reduced row echelon form; the third matrix is not in row echelon form.
$\left[\begin{array}{ccccc}(1) & 2 & 0 & 5 & -6 \\ 0 & (1) & 1 & 2 & 0 \\ 0 & 0 & 0 & (1) & 2 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\left[\begin{array}{c|ccccc}0 & 1 & 0 & 0 & 4 & 0 \\ 0 & 0 & (1) & 0 & -3 & 0 \\ 0 & 0 & 0 & (1) & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1\end{array}\right]$
$\left[\begin{array}{cccc}0 & 1 & -0.5 & 0 \\ 1 & 0 & 3 & 4 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$
DEFINITION: Two matrices A and B are row-equivalent when one can be obtained from the other using elementary row operations.
Notation: A ~ B

THE RANK OF A MATRIX

DEFINITION: A set of row vectors $\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{\mathrm{n}}$ is a linearly dependent set if there are scalars, $\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{n}}$, not all zero, such that:

$$
\begin{equation*}
\mathrm{c}_{1} \cdot \mathbf{r}_{1}+\mathrm{c}_{2} \cdot \mathbf{r}_{2}+\ldots+\mathrm{c}_{\mathrm{n}} \cdot \mathbf{r}_{\mathrm{n}}=0 . \tag{*}
\end{equation*}
$$

The set of vectors $\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{\mathrm{n}}$ is linearly independent if the equation $\left({ }^{*}\right)$ implies that:

$$
c_{1}=c_{2}=\ldots=c_{n}=0 .
$$

DEFINITION: The rank of a matrix A is the maximum number of linearly independent rows of \mathbf{A}.

Notation: r(A).

Theorem: The rank of a matrix A, in row echelon form, is the number of non-zero rows of A.

Theorem: If A and B are row equivalent, then $r(A)=r(B)$.

TYPES OF SOLUTIONS OF A SYSTEM OF LINEAR EQUATIONS (§ 8.4)

Consider the system:

$$
\begin{array}{ccccc}
a_{11} x_{1}+ & a_{12} x_{2}+\ldots+ & a_{1 n} x_{n}= & b_{1} \tag{1}\\
\vdots & \vdots & & \vdots & \vdots \\
a_{m 1} x_{1}+ & a_{m 2} x_{2}+\ldots+ & a_{m n} x_{n}= & b_{n}
\end{array}
$$

Let $A=\left[a_{i j}\right]_{m \times n}, \quad \mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right] \quad$ and $\quad \mathbf{b}=\left[\begin{array}{c}b_{1} \\ b_{2} \\ \vdots \\ b_{n}\end{array}\right]$
The system (1) can be rewritten as $\mathrm{Ax}=\mathbf{b}$
The augmented matrix for the given system is:

$$
[A \mid \mathbf{b}]=\left[\begin{array}{llll|r}
a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \ldots . & a_{2 n} & b_{2} \\
\ldots & & & & \\
a_{m 1} & a_{m 2} & \ldots . & a_{m n} & b_{n}
\end{array}\right]
$$

(i) If $r(A) \neq r(A \mid b)$ then the equations in system (1) are inconsistent and therefore there are no solutions.
(ii) If $r(A)=r(A \mid \mathbf{b})=n$, the system is consistent and has a unique solution.
(iii) If $r(A)=r(A \mid \mathbf{b})=r<n$, then the system is consistent. It has more than one solution. In this case there are $\mathbf{n - r}$ arbitrary variables.

NOTE: When the augmented matrix of a system of linear equations has been reduced to the row-echelon form, the variables corresponding to columns containing a leading entry are called leading variables. The non-leading variables are taken as the arbitrary variables. These provide the parameters in the final solution.

HOMOGENOUS SYSTEM OF LINEAR EQUATIONS

A system of equations of the form

$$
\left\{\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=0 \tag{*}\\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=0 \\
\ldots \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=0
\end{array}\right.
$$

is said to be a homogenous system of equations.
The system (*) can be rewritten as A $\mathbf{x}=\mathbf{0}$

NOTES:

Clearly $\mathrm{x}_{1}=\mathrm{x}_{2}=\ldots=\mathrm{x}_{\mathrm{n}}=0$ is always a solution of the system (*). It is referred to as the trivial solution.

If $\mathbf{m}<\mathbf{n}$ then the system $\left(^{*}\right)$ has infinitely many non-trivial solutions.

THEOREM:

Let A be an $\mathrm{n} \times \mathrm{n}$ matrix. The following are equivalent:
(a) A is invertible.
(b) $\mathrm{A} \mathbf{x}=0$ has only the trivial solution.
(c) A is row equivalent to I .

Definition: A non-invertible matrix is said to be singular. If a matrix is invertible then it is said to be non-singular.

