MATRIX ALGEBRA

A matrix is a rectangular array of numbers. The numbers in the array are called **entries** in the matrix. The **order** or **dimension** or **size** of a matrix is described by specifying the **number of rows** and the **number of columns**.

 $A = \begin{bmatrix} 1 & 2 \\ 3 & 0 \\ -1 & 4 \end{bmatrix}$ Here A is a matrix of order 3 × 2, ie, 3 rows and 2 columns.

 $\begin{bmatrix} 2 & 1 & 0 & -3 \end{bmatrix}$ is a (1×4) – matrix.

	a ₁₁	a ₁₂	 a _{1n}	
	a 21	a 22	 $\begin{bmatrix} a_{1n} \\ a_{2n} \\ \dots \end{bmatrix}$	
Let A =			 	
	a _{m1}	a _{m2}	 a _{mn}	

Here A is a matrix of order $\mathbf{m} \times \mathbf{n}$. If $\mathbf{m} = \mathbf{n}$, then we say that A is a square matrix. Thus a square matrix is a matrix with equal numbers of columns and rows.

Notation: We write $A = [a_{ij}]_{mxn}$ or simply $[a_{ij}]$.

 a_{ij} – is the **entry** (or element) in row i and column j.

Row vector: a matrix of order $1 \times n$ **Column vector**: a matrix of order $m \times 1$.

Eg: $\begin{bmatrix} 5 & 0 & 2 & 5 & -1 \end{bmatrix}$; $\begin{bmatrix} 5 \\ 2 \\ 3 \\ -4 \end{bmatrix}$ 4×1

- A zero matrix is a matrix whose entries are all zero.
 - $\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$ Zero matrix of order 3×2
- Two matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ are equal if they have the same order and the corresponding entries are equal. Notation: A = B.
- Consider $A = \begin{bmatrix} 2 & 1 \\ 3 & x \end{bmatrix}$, $B = \begin{bmatrix} 2 & 1 \\ 3 & 5 \end{bmatrix}$ and $C = \begin{bmatrix} 2 & 1 & 0 \\ 3 & 4 & 0 \end{bmatrix}$. If x = 5 then A = B. For

all other values of x, $A \neq B$. A and C have **different** sizes. Therefore they are not equal matrices.

MATRIX OPERATIONS (§ 8.5)

THE SUM OF MATRICES

Suppose A and B are matrices of order m × n. Let $A = [a_{ij}]$ and $B = [b_{ij}]$.

The sum A + B is a matrix obtained by adding the corresponding entries. Therefore, A + B = C = $[c_{ij}]$ where $c_{ij} = a_{ij} + b_{ij}$

- The order of A + B is also $m \times n$.
- Two matrices **cannot be added** if their **sizes** are **not the same**.

Exercise: Read the examples from the text.

MULTIPLICATION BY A SCALAR

Suppose A = $[a_{ij}]$ is an m × n matrix. Let k be a real number (scalar) then kA is a matrix whose (i, j)th element is ka_{ij}

Example:

 $A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & -3 & 1 \end{bmatrix}$ $3A = \begin{bmatrix} 6 & 9 & 12 \\ 3 & -9 & 3 \end{bmatrix}$ $(-1)A = \begin{bmatrix} -2 & -3 & -4 \\ -1 & 3 & -1 \end{bmatrix}$ $y'_{2}A = \begin{bmatrix} 1 & \frac{3}{2} & 2 \\ \frac{1}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix}$

NOTATION: -A means (-1)AA-B means A + (-1)B

MATRIX MULTIPLICATION

Suppose $A = [a_{ij}]$ is an m×n matrix and $B = [b_{ij}]$ is an n×p matrix.

The **product AB** is defined as a matrix $C = [c_{ij}]$ of order $m \times p$ where $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$

- The $(i,j)^{th}$ entry of the matrix C (= AB) is computed using the ith row $\begin{bmatrix} a_{i1} & a_{i2} & \dots & a_{in} \end{bmatrix}$ of A and the jth column $\begin{bmatrix} b_{1j} \\ b_{2j} \\ \dots \\ b_{nj} \end{bmatrix}$ of B.
- The product AB of two matrices A and B is only defined if the number of columns in A = the number of rows in B.

• The order of AB is $m \times p$.

Example

Suppose A =
$$\begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{bmatrix}$$
 and B = $\begin{bmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{bmatrix}$

A is a 2×3 matrix; B is a 3×4 matrix. Therefore AB is a 2×4 matrix.

$$AB = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 6 & 0 \end{bmatrix} \begin{bmatrix} 4 & 1 & 4 & 3 \\ 0 & -1 & 3 & 1 \\ 2 & 7 & 5 & 2 \end{bmatrix} = \begin{bmatrix} . & . & . \\ . & . & 26 & . \end{bmatrix}$$

The (2,3)-entry = $(2 \times 4) + (6 \times 3) + (0 \times 5) = 26$.

The entry in row 1 and column 4 of AB is given by

 $(1 \times 3) + (2 \times 1) + (4 \times 2) = 13$ etc.

Thus
$$AB = \begin{bmatrix} 12 & 27 & 30 & 13 \\ 8 & -4 & 26 & 12 \end{bmatrix}$$
 (Verify). Here BA is **not** defined

Remark: Even when AB and BA are both defined for matrices A and B, **they need not be equal.**

For example,
$$A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix} B = \begin{bmatrix} 2 & -1 \\ 3 & 0 \end{bmatrix} AB = \begin{bmatrix} 14 & -1 \\ 13 & -2 \end{bmatrix} and BA = \begin{bmatrix} 0 & 5 \\ 3 & 12 \end{bmatrix}$$

PROPERTIES OF MATRIX OPERATIONS

Assume that the orders of the matrices are such that the following operations are defined.

- 1. A + B = B + A (addition is commutative)
- 2. A + (B + C) = (A + B) + C (addition is associative)
- 3. A(BC) = (AB)C (multiplication is associative)
- (A + B)C = AC + BC (distributive) 4.
- 5. k(A + B) = kA = kB

etc.

Read the text; pp 661-666

TRANSPOSE OF A MATRIX

Suppose $A = [a_{ij}]$ is an mxn matrix. Then the **transpose** A^{T} of A is the n × m matrix defined as

$$A^{T} = [a'_{ii}]$$
 where

$$a'_{ij} = a_{ji}$$
 (the (i,j)-entry of A^T is the (j,i)-entry of A)

i.e. the rows of A^{T} are the columns of A.

e.g. Let $A = \begin{bmatrix} 2 & 3 & 1 \\ 4 & 2 & 3 \end{bmatrix}$ be a (2 × 3)-matrix. Then

 $A^{T} = \begin{bmatrix} 2 & 4 \\ 3 & 2 \\ 1 & 3 \end{bmatrix}$. Its dimension is 3 × 2, i.e., it has 3 rows and 2 columns.

Def: A square matrix A is said to be a symmetric matrix if $A^{T} = A$, and a skew-symmetric matrix if $A^{T} = -A$.

PROPERTIES OF THE TRANSPOSE

- (a) $(\mathbf{A}^{\mathrm{T}})^{\mathrm{T}} = \mathbf{A}$ (b) $(\mathbf{A} + \mathbf{B})^{\mathrm{T}} = \mathbf{A}^{\mathrm{T}} + \mathbf{B}^{\mathrm{T}}$
- (c) $(kA)^{T} = kA^{T}$, for any scalar k (d) $(AB)^{T} = B^{T}A^{T}$

Proof of (d): Suppose $A = [a_{ij}]_{m \times n}$, $B = [b_{ij}]_{n \times p}$ and $C = [c_{ij}]_{m \times p}$ such that C = AB. Then $c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$.

 $C^{T} = [c'_{ij}]$ where $c'_{ij} = c_{ji}$. The (i,j) entry in $C^{T} = c'_{ij} = c_{ji} = \sum_{k=1}^{n} a_{jk} b_{ki}$.

Now the (i,j) entry in $B^{T}A^{T} = \sum_{k=1}^{n} b'_{ik} a'_{kj}$ $= \sum_{k=1}^{n} b_{ki} a_{jk}$ $= (i,j) \text{ entry in } C^{T}.$ $\therefore C^{T} = B^{T}A^{T}$

i.e. $(AB)^{T} = B^{T}A^{T}$.

Definition: Suppose A is a square matrix. (i.e. number of rows of A = number of columns of A = n, say).

$$\mathbf{A} = [\mathbf{a}_{ij}]_{\mathbf{n} \times \mathbf{n}}$$

The entries $a_{11}, a_{22}, ..., a_{nn}$ are said to be on the main diagonal of A.

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$
 main diagonal

Notation: $A^2 = A \cdot A$ $A^m = \underbrace{A \cdot A \dots A}_{m \text{ factors}}$

Definition: An **identity matrix** is a square matrix with 1's on the main diagonal and 0's elsewhere.

• **I**_n: identity matrix of order $n \times n$.

•
$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
 and $I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

Theorem: For any $m \times n$ matrix A, we have $AI_n = I_mA = A$.

Definition: Suppose A and B are square matrices.

If AB = BA = I, the identity matrix, then A is said to be **invertible** and B is called an **inverse** of A.

Note: If B is an inverse of A, then B is invertible and A is an inverse of B.

Example:

$$A = \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix} \qquad B = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$$
$$AB = \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 6-5 & 10-10 \\ -3+3 & -5+6 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
$$BA = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & -5 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Here A, B are invertible.

Note that not all matrices are invertible.

Suppose A = $\begin{bmatrix} 1 & 4 & 0 \\ 2 & 5 & 0 \\ 3 & 6 & 0 \end{bmatrix}$.

..

We will show that A is not invertible.

Suppose $B = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$ is a 3 × 3 matrix. Consider BA. It is easy to check that the 3rd column of BA is $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$. \therefore BA \neq I.

Thus there is no matrix B such that BA = I. Hence the matrix A is not invertible.

THEOREM 1: If a matrix is invertible then its inverse is **unique**.

Proof: Suppose A is invertible. Let B and C be inverses of A.

$$AB = BA = I \tag{1}$$

and AC = CA = I (2)

We will show that B = C. Since AB = I, C(AB) = CI = C (3)

But

$$C(AB) = (CA)B = IB = B$$
(4)

From (3) and (4) we have B = C.

 \therefore The inverse of A is **unique**.

NOTATION: The inverse of A is denoted as A^{-1} .

Therefore $A A^{-1} = A^{-1}A = I$.

Note that the inverse of A^{-1} is A, that is, $(A^{-1})^{-1} = A$.

Result: If A and B are invertible matrices of the same order then the inverse of AB is $B^{-1}A^{-1}$.

Proof: (AB) $(B^{-1}A^{-1}) = A(BB^{-1}) A^{-1}$ = (AI) A^{-1} = $A A^{-1} = I$

Similarly we can show that $(B^{-1}A^{-1})(AB) = I$.

Therefore, AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

SYSTEMS OF LINEAR EQUATIONS (§ 8.4)

The equation

 $\alpha_1 x_1 + \alpha_2 x_2 + \ldots + \alpha_n x_n = \beta \tag{(*)}$

is a **linear equation** in n variables $x_1, x_2, ..., x_n$.

Here α_i 's and β are real numbers.

A collection of linear equations in $x_1, ..., x_n$ is referred to as a system of linear equations.

For example,

is a system of **two** equations in **three** variables (unknowns) x_1 , x_2 and x_3 .

A sequence of numbers $s_1, s_2, ..., s_n$ is a solution to the system (*) if

$$\alpha_1 s_1 + \alpha_2 s_2 + \ldots + \alpha_n s_n = \beta.$$

Example: Consider the system of equations:

x + y + z = 32x + y + 3z = 1

$$\begin{array}{c} x = -2 \\ Clearly \quad y = 5 \\ z = 0 \end{array} \right\} \qquad \text{and} \qquad \begin{array}{c} x = 0 \\ y = 4 \\ z = -1 \end{array} \right\} \qquad \text{are solutions to the above system.}$$

Consider the system

This system is constructed using the rectangular array

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_n \end{bmatrix}$$

This $m \times (n + 1)$ -matrix is called the **augmented matrix** for the system (1). To solve the system (1) we **eliminate** the variables.

Example: Solve the system given below:

ELEMENTARY ROW OPERATIONS (e.r.o.) (§ 8.4)

An elementary row operation (e.r.o) is an operation performed on the rows of a matrix and is one of **3 types.**

- 1. Multiply a row by a non-zero constant;
- 2. Interchange any two rows;
- 3. Add a multiple of one row to another row.

By these operations we can transform the given matrix into the so called **row echelon** form. To solve a system of equations we transform the augmented matrix into **row** echelon form. This form facilitates the solving for the unknown variables.

DEFINITION:

• The **leading entry** of a row in a matrix is the **first non-zero** entry in the row.

- A matrix is in **row-echelon form** if the **leading** entry in **each row** (except the first) is to **the right** of the leading entry of the **preceding row**. The leading entry in each row is 1. All rows consisting of zeros are at the bottom of the matrix.
- A matrix is in **reduced row echelon form** if, in addition, every number above and below each leading entry is a 0.

Examples: Consider the matrices given below: The first one is in row echelon form; the second matrix is in reduced row echelon form; the third matrix is not in row echelon form.

	$\begin{bmatrix} -6\\0\\2\\0 \end{bmatrix}$ The circled entries are the leading entries.
$\begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$	
$\begin{bmatrix} 0 & 1 & -0.5 \\ 1 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$	0 4 1 0

DEFINITION: Two matrices A and B are **row-equivalent** when one can be obtained from the other using elementary row operations. **Notation:** $A \sim B$

THE RANK OF A MATRIX

DEFINITION: A set of row vectors $\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_n$ is a **linearly dependent** set if there are scalars, $c_1, c_2, ..., c_n$, **not all zero**, such that:

$$\mathbf{c}_1 \cdot \mathbf{r}_1 + \mathbf{c}_2 \cdot \mathbf{r}_2 + \ldots + \mathbf{c}_n \cdot \mathbf{r}_n = 0.$$
 ------(*)

The set of vectors $\mathbf{r}_1, \mathbf{r}_2, ..., \mathbf{r}_n$ is **linearly independent** if the equation (*) implies that:

$$\mathbf{c}_1 = \mathbf{c}_2 = \ldots = \mathbf{c}_n = \mathbf{0}.$$

DEFINITION: The rank of a matrix A is the maximum number of linearly independent rows of A.

Notation: r(A).

Theorem: The rank of a matrix A, **in row echelon form**, is the number of non-zero rows of A.

Theorem: If A and B are row equivalent, then r(A) = r(B).

TYPES OF SOLUTIONS OF A SYSTEM OF LINEAR EQUATIONS (§ 8.4)

Consider the system:

 $\begin{array}{rcl}
a_{11}x_{1} + & a_{12}x_{2} + & \dots + & a_{1n}x_{n} = & b_{1} \\
\vdots & \vdots & & \vdots & \vdots & & \\
a_{m1}x_{1} + & a_{m2}x_{2} + & \dots + & a_{mn}x_{n} = & b_{n}
\end{array}$ $\begin{array}{rcl}
\text{Let } A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}, \quad \mathbf{x} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} \quad and \quad \mathbf{b} = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{n} \end{bmatrix}$

The system (1) can be rewritten as $A\mathbf{x} = \mathbf{b}$ ------(2)

The augmented matrix for the given system is:

ī

$$\begin{bmatrix} A \mid \mathbf{b} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} & b_1 \\ a_{21} & a_{22} & \dots & a_{2n} & b_2 \\ \dots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} & b_n \end{bmatrix}$$

- (i) If $r(A) \neq r(A | b)$ then the equations in system (1) are <u>inconsistent and therefore</u> there are no solutions.
- (ii) If $r(A) = r(A | \mathbf{b}) = n$, the system is <u>consistent and has a unique solution</u>.
- (iii) If $r(A) = r(A | \mathbf{b}) = r < n$, then the system is <u>consistent</u>. It has more than one <u>solution</u>. In this case there are **n-r** arbitrary variables.

NOTE: When the augmented matrix of a system of linear equations has been reduced to the row-echelon form, the variables corresponding to columns containing a leading entry are called **leading variables**. The non-leading variables are taken as the **arbitrary variables**. These provide the **parameters** in the final solution.

HOMOGENOUS SYSTEM OF LINEAR EQUATIONS

A system of equations of the form

 $\begin{cases} a_{11} x_1 + a_{12} x_2 + \dots + a_{1n} x_n = 0 \\ a_{21} x_1 + a_{22} x_2 + \dots + a_{2n} x_n = 0 \\ \dots \\ a_{m1} x_1 + a_{m2} x_2 + \dots + a_{mn} x_n = 0 \end{cases}$

----- (*)

is said to be a **homogenous** system of equations. The system (*) can be rewritten as A $\mathbf{x} = \mathbf{0}$

NOTES:

Clearly $x_1 = x_2 = ... = x_n = 0$ is **always** a solution of the system (*). It is referred to as the **trivial solution.**

If m < n then the system (*) has infinitely many non-trivial solutions.

THEOREM:

Let A be an $n \times n$ matrix. The following are equivalent:

- (a) A is invertible.
- (b) $A \mathbf{x} = 0$ has only the trivial solution.
- (c) A is **row equivalent** to I.

Definition: A **non-invertible** matrix is said to be **singular**. If a matrix is invertible then it is said to be **non-singular**.