
Harvey Mudd College Math Tutorial:

Elementary Vector Analysis

In order to measure many physical quantities, such as force or velocity, we need to determine
both a magnitude and a direction. Such quantities are conveniently represented as vectors.

The direction of a vector ~v in 3-space is
specified by its components in the x, y,
and z directions, respectively:

(x, y, z) or x~i+ y~j + z~k,

where ~i, ~j, and ~k
are the coordinate
vectors along the
x, y, and z-axes.

~i = (1, 0, 0)
~j = (0, 1, 0)
~k = (0, 0, 1)

The magnitude of a vector ~v = (x, y, z),
also called its length or norm, is given by

‖~v‖ =
√
x2 + y2 + z2

Notes

• Vectors can be defined in any number of dimensions, though we focus here only on
3-space.

• When drawing a vector in 3-space, where you position the vector is unimportant; the
vector’s essential properties are just its magnitude and its direction. Two vectors are
equal if and only if corresponding components are equal.

• A vector of norm 1 is called a unit vector. The coordinate vectors are examples of
unit vectors.

• The zero vector, ~0 = (0, 0, 0), is the only vector with magnitude 0.



Basic Operations on Vectors

To add or subtract vectors ~u = (u1, u2, u3)
and ~v = (v1, v2, v3), add or subract the cor-
responding coordinates:

~u+ ~v = (u1 + v1, u2 + v2, u3 + v3)

~u− ~v = (u1 − v1, u2 − v2, u3 − v3)

To multiply vector ~u by a scalar k, multiply each
coordinate of ~u by k:

k~u = (ku1, ku2, ku3)

Example

The vector ~v = (2, 1,−2) = 2~i +~j − 2~k has magni-
tude

‖~v‖ =
√

22 + 12 − (−2)2 = 3.

Thus, the vector 1
3
~v =

(
2
3
, 1

3
, −2

3

)
is a unit vector in the same direction as ~v.

In general, for ~v 6= ~0, we can scale (or normalize) ~v to the unit vector as ~v
‖~v‖ pointing in

the same direction as ~v.

Dot Product

Let ~u = (u1, u2, u3) and ~v = (v1, v2, v3). The dot product ~u · ~v (also called the scalar
product or Euclidean inner product) of ~u and ~v is defined in two distinct (though
equivalent) ways:

~u · ~v = u1v1 + u2v2 + u3v3

=

{
‖~u‖ ‖~v‖ cos θ if ~u 6= ~0, ~v 6= ~0

0 if ~u = ~0 or ~v = ~0

where 0 ≤ θ ≤ π is the angle between ~u and ~v

Why are the two definitions equivalent?

http://www.math.hmc.edu/calculus/tutorials/vectoranalysis/dotproduct.pdf


Properties of the Dot Product

• ~u · ~v = ~v · ~u

• ~u · (~v + ~w) = (~u · ~v) + (~u · ~w)

• ~u · ~u = ‖~u‖2

See if you can verify each of these!

Example

If ~u = (1,−2, 2) and ~v = (−4, 0, 2), then
~u · ~v = (1)(−4) + (−2)(0) + (2)(2)

= −1 + 0 + 4
= 0

Using the second definition of the dot
product with ‖~u‖ = 3 and ‖~v‖ = 2

√
5,

~u · ~v = 0 = 6
√

5 cos θ

so cos θ = 0, yielding θ = π
2
.

Though we might not have guessed it, ~u
and ~v are perpendicular to each other!
In general,

Two non-zero vectors ~u and ~v are perpendicular (or orthonormal if
and only if ~u · ~v = 0.

Proof

Projection of a Vector

It is often useful to resolve a vector ~v into the sum
of vector components parallel and perpendicular to
a vector ~u.
Consider first the parallel component, which is
called the projection of ~v onto ~u. This projec-
tion should be in the direction of ~u and should have
magnitude ‖~v‖ cos θ, where 0 ≤ θ ≤ π is the angle
between ~u and ~v. Let’s normalize ~u to ~u

‖~u‖ and then

scale this by the magnitude ‖~v‖ cos θ:
projection of ~v onto ~u = (‖~v‖ cos θ) ~u

‖~u‖
= ‖~v‖‖~u‖ cos θ

‖~u‖2 ~u

= ~v·~u
‖~u‖2~u

http://www.math.hmc.edu/calculus/tutorials/vectoranalysis/dotzero.pdf


The perpendicular vector component of ~v is then just the difference between ~v and the
projection of ~v onto ~u.

In summary,

projection of ~v onto ~u

vector component of
~v perpendicular to ~u

= ~v·~u
‖~u‖2~u

= ~v − ~v·~u
‖~u‖2~u

Cross Product

Let ~u = (u1, u2, u3) and ~v = (v1, v2, v3). The cross product ~u × ~v yields a vector perpen-
dicular to both ~u and ~v with direction determined by the right-hand rule. Specifically,

~u× ~v = (u2v3 − u3v2)~i− (u1v3 − u3v1)~j + (u1v2 − u2v1)~k

It can also be shown that

‖~u× ~v‖ = ‖~u‖ ‖~v‖ sin θ for ~u 6= ~0, ~v 6= ~0

where 0 ≤ θ ≤ π is the angle between ~u and ~v.

Proof

Thus, the magnitude ‖~u× ~v‖ gives the
area of the parallelogram formed by ~u and
~v.
As implied by the geometric interpreta-
tion,

Non zero vectors ~u and ~v are paral-
lel if and only if ~u× ~v = ~0.

Proof

Properties of the Cross Product

• ~u× ~v = − (~v × ~u)

• ~u× (~v + ~w) = (~u× ~v) + (~u× ~w)

• ~u× ~u = ~0

Again, see if you can verify each of these.

Connections between the Dot Product and Cross Product

http://www.math.hmc.edu/calculus/tutorials/vectoranalysis/crossproduct.pdf
http://www.math.hmc.edu/calculus/tutorial/vectoranalysis/crosszero.pdf
http://www.math.hmc.edu/calculus/tutorials/vectoranalysis/connections.pdf


In the following Exploration, select values for the components of ~u and ~v. You will see ~u · ~v
and ~u× ~v computed and ~u, ~v, and ~u× ~v displayed on a coordinate system.

Exploration

Key Concepts

Let ~u = (u1, u2, u3) and ~v = (v1, v2, v3).

• Basic Operations, Norm of a vector

~u+ ~v = (u1 + v1, u2 + v2, u3 + v3)

~u− ~v = (u1 − v1, u2 − v2, u3 − v3)

k~u = (ku1, ku2, ku3)

‖~v‖ =
√
x2 + y2 + z2

• Dot Product

~u · ~v = u1v1 + u2v2 + u3v3

=

{
‖~u‖ ‖~v‖ cos θ if ~u 6= ~0, ~v 6= ~0

0 if ~u = ~0 or ~v = ~0

where 0 ≤ θ ≤ π is the angle between ~u and ~v

for ~u 6= ~0, ~v 6= ~0,

~u · ~v = 0 if and only if ~u is orthogonal to ~v.

• Projection of a Vector

projection of ~v onto ~u

vector component of
~v perpendicular to ~u

= ~v·~u
‖~u‖2~u

= ~v − ~v·~u
‖~u‖2~u

• Cross Product

~u× ~v = (u2v3 − u3v2)~i− (u1v3 − u3v1)~j + (u1v2 − u2v1)~k

‖~u× ~v‖ = ‖~u‖ ‖~v‖ sin θ for ~u 6= ~0, ~v 6= ~0

where 0 ≤ θ ≤ π is the angle between ~u and ~v.

[I’m ready to take the quiz.] [I need to review more.]
[Take me back to the Tutorial Page]

http://webquiz.physics.hmc.edu/wq.Student.TakeAQuiz.fcgi?courseNum=Calculus+Tutorial&quiz=QZ2310
http://www.math.hmc.edu/calculus/tutorials

