Harvey Mudd College Math Tutorial: Elementary Vector Analysis

In order to measure many physical quantities, such as force or velocity, we need to determine both a magnitude and a direction. Such quantities are conveniently represented as vectors.

The direction of a vector \vec{v} in 3-space is specified by its components in the x, y, and z directions, respectively:

$$(x, y, z)$$
 or $x\vec{i} + y\vec{j} + z\vec{k}$,

where \vec{i} , \vec{j} , and \vec{k} are the **coordinate vectors** along the x, y, and z-axes.

$$\vec{i} = (1, 0, 0)$$

 $\vec{j} = (0, 1, 0)$
 $\vec{k} = (0, 0, 1)$

The magnitude of a vector $\vec{v} = (x, y, z)$, also called its length or **norm**, is given by

$$\|\vec{v}\| = \sqrt{x^2 + y^2 + z^2}$$

Notes

- Vectors can be defined in any number of dimensions, though we focus here only on 3-space.
- When drawing a vector in 3-space, where you position the vector is unimportant; the vector's essential properties are just its magnitude and its direction. Two vectors are **equal** if and only if corresponding components are equal.
- A vector of norm 1 is called a **unit vector**. The coordinate vectors are examples of unit vectors.
- The zero vector, $\vec{0} = (0, 0, 0)$, is the only vector with magnitude 0.

Basic Operations on Vectors

To add or subtract vectors $\vec{u} = (u_1, u_2, u_3)$ and $\vec{v} = (v_1, v_2, v_3)$, add or subtract the corresponding coordinates:

$$\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2, u_3 + v_3)$$

$$\vec{u} - \vec{v} = (u_1 - v_1, u_2 - v_2, u_3 - v_3)$$

kű

To multiply vector \vec{u} by a scalar k, multiply each coordinate of \vec{u} by k:

$$k\vec{u} = (ku_1, ku_2, ku_3)$$

Example

The vector $\vec{v} = (2, 1, -2) = 2\vec{i} + \vec{j} - 2\vec{k}$ has magnitude $\|\vec{v}\| = \sqrt{2^2 + 1^2 - (-2)^2} = 3.$

Thus, the vector $\frac{1}{3}\vec{v} = \left(\frac{2}{3}, \frac{1}{3}, \frac{-2}{3}\right)$ is a unit vector in the same direction as \vec{v} .

In general, for $\vec{v} \neq \vec{0}$, we can scale (or **normalize**) \vec{v} to the unit vector as $\frac{\vec{v}}{\|\vec{v}\|}$ pointing in the same direction as \vec{v} .

Dot Product

Let $\vec{u} = (u_1, u_2, u_3)$ and $\vec{v} = (v_1, v_2, v_3)$. The **dot product** $\vec{u} \cdot \vec{v}$ (also called the **scalar product** or **Euclidean inner product**) of \vec{u} and \vec{v} is defined in two distinct (though equivalent) ways:

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$$

$$= \begin{cases} \|\vec{u}\| \|\vec{v}\| \cos \theta & \text{if } \vec{u} \neq \vec{0}, \vec{v} \neq \vec{0} \\ 0 & \text{if } \vec{u} = \vec{0} \text{ or } \vec{v} = \vec{0} \\ \text{where } 0 \le \theta \le \pi \text{ is the angle between } \vec{u} \text{ and } \vec{v} \end{cases}$$

Why are the two definitions equivalent?

Properties of the Dot Product

• $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$

•
$$\vec{u} \cdot (\vec{v} + \vec{w}) = (\vec{u} \cdot \vec{v}) + (\vec{u} \cdot \vec{w})$$

• $\vec{u} \cdot \vec{u} = \|\vec{u}\|^2$

See if you can verify each of these!

Example

If
$$\vec{u} = (1, -2, 2)$$
 and $\vec{v} = (-4, 0, 2)$, then
 $\vec{u} \cdot \vec{v} = (1)(-4) + (-2)(0) + (2)(2)$
 $= -1 + 0 + 4$
 $= 0$

Using the second definition of the dot product with $\|\vec{u}\| = 3$ and $\|\vec{v}\| = 2\sqrt{5}$,

$$\vec{u} \cdot \vec{v} = 0 = 6\sqrt{5}\cos\theta$$

so $\cos \theta = 0$, yielding $\theta = \frac{\pi}{2}$. Though we might not have guessed it, \vec{u} and \vec{v} are perpendicular to each other! In general,

eneral, Two non-zero vectors \vec{u} and \vec{v} are perpendicular (or **orthonormal** if and only if $\vec{u} \cdot \vec{v} = 0$.

Proof

Projection of a Vector

It is often useful to resolve a vector \vec{v} into the sum of vector components parallel and perpendicular to a vector \vec{u} .

Consider first the parallel component, which is called the **projection of** \vec{v} **onto** \vec{u} . This projection should be in the direction of \vec{u} and should have magnitude $\|\vec{v}\| \cos \theta$, where $0 \le \theta \le \pi$ is the angle between \vec{u} and \vec{v} . Let's normalize \vec{u} to $\frac{\vec{u}}{\|\vec{u}\|}$ and then scale this by the magnitude $\|\vec{v}\| \cos \theta$:

projection of \vec{v} onto $\vec{u} = (\|\vec{v}\| \cos \theta) \frac{\vec{u}}{\|\vec{u}\|}$ $= \frac{\|\vec{v}\| \|\vec{u}\| \cos \theta}{\|\vec{v}\|^2} \vec{u}$

$$= \frac{\|\vec{v}\| \|\vec{u}\| \cos \theta}{\|\vec{u}\|^2} \\ = \frac{\vec{v} \cdot \vec{u}}{\|\vec{u}\|^2} \vec{u}$$

The perpendicular vector component of \vec{v} is then just the difference between \vec{v} and the projection of \vec{v} onto \vec{u} .

In summary,

projection of \vec{v} onto $\vec{u} = \frac{\vec{v} \cdot \vec{u}}{\|\vec{u}\|^2} \vec{u}$ vector component of = $\vec{v} - \frac{\vec{v} \cdot \vec{u}}{\|\vec{u}\|^2} \vec{u}$

Cross Product

 \vec{v} perpendicular to \vec{u}

Let $\vec{u} = (u_1, u_2, u_3)$ and $\vec{v} = (v_1, v_2, v_3)$. The cross product $\vec{u} \times \vec{v}$ yields a vector perpendicular to both \vec{u} and \vec{v} with direction determined by the right-hand rule. Specifically,

$$\vec{u} \times \vec{v} = (u_2 v_3 - u_3 v_2)\vec{i} - (u_1 v_3 - u_3 v_1)\vec{j} + (u_1 v_2 - u_2 v_1)\vec{k}$$

It can also be shown that

 $\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \|\vec{v}\| \sin \theta \quad \text{for } \vec{u} \neq \vec{0}, \quad \vec{v} \neq \vec{0}$

where $0 \le \theta \le \pi$ is the angle between \vec{u} and \vec{v} .

Proof

Thus, the magnitude $\|\vec{u} \times \vec{v}\|$ gives the area of the parallelogram formed by \vec{u} and \vec{v} .

As implied by the geometric interpretation,

Non zero vectors \vec{u} and \vec{v} are parallel if and only if $\vec{u} \times \vec{v} = \vec{0}$.

Proof

Properties of the Cross Product

- $\vec{u} \times \vec{v} = -(\vec{v} \times \vec{u})$
- $\vec{u} \times (\vec{v} + \vec{w}) = (\vec{u} \times \vec{v}) + (\vec{u} \times \vec{w})$
- $\vec{u} \times \vec{u} = \vec{0}$

Again, see if you can verify each of these.

Connections between the Dot Product and Cross Product

In the following Exploration, select values for the components of \vec{u} and \vec{v} . You will see $\vec{u} \cdot \vec{v}$ and $\vec{u} \times \vec{v}$ computed and \vec{u} , \vec{v} , and $\vec{u} \times \vec{v}$ displayed on a coordinate system. Exploration

Key Concepts

Let $\vec{u} = (u_1, u_2, u_3)$ and $\vec{v} = (v_1, v_2, v_3)$.

• Basic Operations, Norm of a vector

$$\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2, u_3 + v_3)$$

$$\vec{u} - \vec{v} = (u_1 - v_1, u_2 - v_2, u_3 - v_3)$$

$$\vec{ku} = (ku_1, ku_2, ku_3)$$

$$\|\vec{v}\| = \sqrt{x^2 + y^2 + z^2}$$

• Dot Product

$$\vec{u} \cdot \vec{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$$

=
$$\begin{cases} \|\vec{u}\| \|\vec{v}\| \cos \theta & \text{if } \vec{u} \neq \vec{0}, \vec{v} \neq \vec{0} \\ 0 & \text{if } \vec{u} = \vec{0} \text{ or } \vec{v} = \vec{0} \\ \text{where } 0 \le \theta \le \pi \text{ is the angle between } \vec{u} \text{ and } \vec{v} \end{cases}$$

for $\vec{u} \neq \vec{0}$, $\vec{v} \neq \vec{0}$,

 $\vec{u} \cdot \vec{v} = 0$ if and only if \vec{u} is orthogonal to \vec{v} .

• Projection of a Vector

projection of \vec{v} onto $\vec{u} = \frac{\vec{v} \cdot \vec{u}}{\|\vec{u}\|^2} \vec{u}$

vector component of \vec{v} perpendicular to $\vec{u} = \vec{v} - \frac{\vec{v} \cdot \vec{u}}{\|\vec{u}\|^2} \vec{u}$

• Cross Product

$$\vec{u} \times \vec{v} = (u_2 v_3 - u_3 v_2) \vec{i} - (u_1 v_3 - u_3 v_1) \vec{j} + (u_1 v_2 - u_2 v_1) \vec{k}$$
$$\|\vec{u} \times \vec{v}\| = \|\vec{u}\| \|\vec{v}\| \sin \theta \quad \text{for } \vec{u} \neq \vec{0}, \quad \vec{v} \neq \vec{0}$$
where $0 \le \theta \le \pi$ is the angle between \vec{u} and \vec{v} .

[I'm ready to take the quiz.] [I need to review more.] [Take me back to the Tutorial Page]