VECTORS

Three-dimensional coordinate systems

To locate a point in the three-dimensional space we require three numbers. In the threedimensional space we have a fixed point O, referred to as the origin, three directed lines through the origin that are referred to as the co-ordinate axes (x-axis, y-axis and z axis). These three lines are mutually perpendicular. The three co-ordinate axes determine the coordinate planes. The $x y$-plane is the plane that contains the x - and y axes. Similarly the $x z$-plane and the $y z$-plane are defined.

If P is a point in space, let a be the directed distance (this is the perpendicular distance) from P to the $y z$-plane. Similarly let b and c be the distances from P to the $x z$-plane and xy-plane respectively. We represent the point P by the ordered triple (a, b, c).

Distance: The distance $|P Q|$ between the point $P(a, b, c)$ and $Q\left(a_{1}, b_{1}, c_{1}\right)$ is given by $|P Q|=\sqrt{\left(a_{1}-a\right)^{2}+\left(b_{1}-b\right)^{2}+\left(c_{1}-c\right)^{2}}$

Equation of a Sphere: An equation of a sphere with centre $C(h, k, l)$ and radius r is given by $(x-h)^{2}+(y-k)^{2}+(z-1)^{2}=r^{2}$.

VECTORS

A vector is a quantity that has both magnitude and direction. E.g.: wind movement described by speed and direction, say, 20 kph north east; force; displacement.

A scalar is a quantity described using just the magnitude. In this course a real number is referred to as a scalar.

Notation: We denote vectors using boldface lower case type such as $\mathbf{a}, \mathbf{v}, \mathbf{w}$ etc.
Vectors are represented geometrically by arrows in 2-space or 3-space. The direction of the arrow specifies the direction of the vector and the length of the arrow describes the magnitude of the vector.

The tail of the arrow is the initial point of the vector and the tip of the arrow is the terminal point of the vector.

Figure 1

All the vectors represented by arrows in Figure 1 are equivalent since they have the same length and they point in the same direction (different positions).

The initial point of a vector can be moved to any convenient point A by an appropriate translation. If A is the initial point and B is the terminal point of \mathbf{v}, then we write $\mathbf{v}=$ $\overrightarrow{\mathrm{AB}}$. If the initial and terminal points of a vector coincide, then we have the zero vector denoted $\mathbf{0}$.

ANALYTICAL REPRESENTATION

Fixed point O (origin). Three directed lines through O, mutually perpendicular: The coordinate axes x - axis, y - axis, z - axis. Place the initial point of a vector \mathbf{a} at the origin O. Suppose that the terminal point of a has coordinates (a_{1}, a_{2}, a_{3}). The coordinates of the terminal point are referred to as the components of the vector a.

The particular representation of the vector $\overrightarrow{\mathrm{OP}}=\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right\rangle=\mathbf{a}$ from the origin to the point P is referred to as the position vector of the point P.

- Given points $\mathrm{A}\left(\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{z}_{1}\right)$ and $\mathrm{B}\left(\mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{z}_{2}\right)$ the vector a with representation $\overrightarrow{A B}$ is $\left\langle\mathrm{x}_{2}-\mathrm{x}_{1}, \mathrm{y}_{2}-\mathrm{y}_{1}, \mathrm{z}_{2}-\mathrm{z}_{1}\right\rangle . \therefore \mathrm{a}_{1}=\mathrm{x}_{2}-\mathrm{x}_{1}, \mathrm{a}_{2}=\mathrm{y}_{2}-\mathrm{y}_{1}$, and $\mathrm{a}_{3}=\mathrm{z}_{2}-\mathrm{z}_{1}$.
- \quad The length of a vector $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ is $|\mathbf{a}|=\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}}$.
- \quad The vector $\mathbf{0}=(0,0,0)$ has length 0 . This is the only vector with length 0 . This has no specific direction.

Example:

(1) Find the components of the vector with initial point P and terminal point Q.
(a) $P(4,8)$ and $Q(3,7)$ (b) $P(3,-7,2)$ and $Q(-2,5,-4)$

Solution: (a) $\overrightarrow{P Q}=\langle 3-4,7-8\rangle=\langle-1,-1\rangle$
(b) $\overrightarrow{P Q}=\langle-2-3,5-(-7),-4-2\rangle=\langle-5,12,-6\rangle$.
(2) Find a non zero vector \mathbf{u} with initial point $\mathrm{P}(-1,3,-5)$ such that
(a) \mathbf{u} has the same direction as $\mathbf{v}=\langle 6,7,-3\rangle(\mathbf{b}) \mathbf{u}$ is oppositely directed to $\mathbf{v}=$ $\langle 6,7,-3\rangle$

Definition:

A two-dimensional vector is an ordered pair $\mathbf{a}=\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}\right\rangle$ of real numbers a_{1} and a_{2}. A three-dimensional vector is an ordered triple $\mathbf{a}=\left\langle a_{1}, a_{2}, a_{3}\right\rangle$ of real numbers a_{1}, a_{2} and a_{3}.

Vector Addition

If $\mathbf{a}=\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}\right\rangle$ and $\mathbf{b}=\left\langle\mathrm{b}_{1}, \mathrm{~b}_{2}\right\rangle$, then $\mathbf{a}+\mathbf{b}=\left\langle\mathrm{a}_{1}+\mathrm{b}_{1}, \mathrm{a}_{2}+\mathrm{b}_{2}\right\rangle$. Similarly for threedimensional vectors, $\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right\rangle+\left\langle\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}\right\rangle=\left\langle\mathrm{a}_{1}+\mathrm{b}_{1}, \mathrm{a}_{2}+\mathrm{b}_{2}, \mathrm{a}_{3}+\mathrm{b}_{3}\right\rangle$.

- The addition of vectors is illustrated in the following figure. Geometrically, position the vectors a and \mathbf{b} (without changing magnitudes or directions) so that the initial point of the vector \mathbf{b} coincides with the terminal point of the vector \mathbf{a}. The sum of the vectors \mathbf{a} and \mathbf{b} denoted $\mathbf{a}+\mathbf{b}$ is the vector whose initial point coincides with the initial point of a and the terminal point coincides with the terminal point of \mathbf{b}. This definition of addition of vectors is sometimes referred to as the triangle law.
- The sum of vectors and \mathbf{b} is also sometimes expressed through the so called parallelogram law: We draw the vectors \mathbf{a} and \mathbf{b} so that their initial points coincide. Now we can complete the parallelogram. The diagonal of the parallelogram that passes through the initial point of a (also the initial point of \mathbf{b}) is the vector $\mathbf{a}+\mathbf{b}$.

Triangle Law

Parallelogram Law

Scalar Multiplication

If c is a scalar (real number) and $\mathbf{a}=\left\langle a_{1}, a_{2}\right\rangle$ is a vector, then the vector $\mathrm{c} \mathbf{a}=$ $\left\langle\mathrm{ca}_{1}, \mathrm{ca}_{2}\right\rangle$. Similarly for three-dimensional vectors, $\mathrm{c}\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right\rangle=\left\langle\mathrm{ca}_{1}, \mathrm{ca}_{2}, \mathrm{ca}_{3}\right\rangle$

$$
\begin{aligned}
|\mathbf{c a}| & =\left|\left\langle\mathrm{ca}_{1}, \mathrm{ca}_{2}\right\rangle\right| \\
& =\sqrt{\left(\mathrm{ca}_{1}\right)^{2}+\left(\mathrm{ca}_{2}\right)^{2}} \\
& =\sqrt{\mathrm{c}^{2}\left(\mathrm{a}_{1}^{2}+\mathrm{a}_{2}^{2}\right)} \\
& =\sqrt{\mathrm{c}^{2}} \sqrt{\mathrm{a}_{1}^{2}+\mathrm{a}_{2}^{2}} \\
& =|c| \mathbf{a} \mid \text { (Note that }|c| \text { is the absolute value of the scalar } \mathrm{c} .)
\end{aligned}
$$

- Length of $\mathbf{c a}=|c| \times$ length of \mathbf{a}.
- If c >0 a, then and ca have the same direction and if $\mathrm{c}<0$, they have opposite directions.

Note: $-\mathbf{a}=(-1) \mathbf{a}$

Difference:

$\mathbf{a}-\mathbf{b}=\mathbf{a}+(-\mathbf{b})=\left\langle\mathrm{a}_{1}-\mathrm{b}_{1}, \mathrm{a}_{2}-\mathrm{b}_{2}\right\rangle$, where $\mathbf{a}=\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}\right\rangle ; \mathbf{b}=\left\langle\mathrm{b}_{1}, \mathrm{~b}_{2}\right\rangle$

PROPERTIES OF VECTORS

Assume that \mathbf{a}, \mathbf{b}, \mathbf{c} are vectors and x and y are scalars. We have the following properties:

1. $\mathbf{a}+\mathbf{b}=\mathbf{b}+\mathbf{a}$ (commutative law)
2. $\mathbf{a}+(\mathbf{b}+\mathbf{c})=(\mathbf{a}+\mathbf{b})+\mathbf{c}$ (associative law)
3. $\mathbf{a}+\mathbf{0}=\mathbf{a}$
4. $\mathbf{a}+(-\mathbf{a})=\mathbf{0}$
5. $x(\mathbf{a}+\mathbf{b})=x \mathbf{a}+x \mathbf{b}$
6. $\quad(x+y) \mathbf{a}=x \mathbf{a}+y \mathbf{a}$
7. $\quad(x . y) \mathbf{a}=x(y \mathbf{a})$
8. $1 \mathbf{a}=\mathbf{a}$

Def: A unit vector is a vector whose length is 1 .
Question: How do you find a vector whose direction is the same as that of \mathbf{u} and whose length is equal to 5 ?

Notes

- If $\mathbf{a} \neq 0$, the unit vector that has the same direction as \mathbf{a} is $\mathbf{u}=\frac{\mathbf{a}}{|\mathbf{a}|}$.

Exercise: Verify that $|\mathbf{u}|=1$

- Two non-zero vectors a and \mathbf{b} are parallel if each is a scalar multiple of the other That is, $\mathbf{a}=\lambda . \mathbf{b}$ (λ : scalar).

Result 1: Two non-zero vectors \mathbf{a} and \mathbf{b} are parallel iff there are non-zero scalars λ and μ such that $\lambda \mathbf{a}+\mu \mathbf{b}=0$

Proof: Suppose \mathbf{a} and \mathbf{b} are parallel vectors.
\Rightarrow There is a scalar $\mathrm{s}(\neq 0)$ such that $\mathbf{a}=\mathbf{s b}$
$\Rightarrow \quad \mathbf{a}-\mathbf{s b}=\mathbf{0}$
Now choose $\lambda=1$ and $\mu=-$ s. Thus we have the equation $\lambda \mathbf{a}+\mu \mathbf{b}=0$

Conversely suppose there are non-zero scalars λ and μ such that $\lambda \mathbf{a}+\mu \mathbf{b}=\mathbf{0}$
$\Rightarrow \quad \lambda \mathbf{a}=-\mu \mathbf{b}$
$\Rightarrow \quad \mathbf{a}=\frac{-\mu}{\lambda} . \mathbf{b}$
Thus \mathbf{a} and \mathbf{b} are parallel vectors.
Corollary: If \mathbf{a} and \mathbf{b} are not parallel and $\lambda \mathbf{a}+\mu \mathbf{b}=\mathbf{0}$ then $\lambda=0$ and $\mu=0$.

EXAMPLE: Prove that the midpoints of the sides of a quadrilateral form a parallelogram.

PROOF: Let OABC be a quadrilateral. Suppose P, Q, R and S are the midpoints of $\mathrm{OA}, \mathrm{AB}, \mathrm{BC}$, and CO respectively.
It suffices to show that $\overrightarrow{P Q}=\overrightarrow{S R}$. (this would imply that these two sides are parallel and equal.) Since P is the mid-point of $\mathrm{OA}, \overrightarrow{\mathrm{PA}}=\frac{1}{2} \overrightarrow{\mathrm{OA}}$. Similarly $\overrightarrow{\mathrm{AQ}}=\frac{1}{2} \overrightarrow{\mathrm{AB}}$.

$$
\begin{aligned}
\therefore \overrightarrow{\mathrm{PQ}} & =\overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{AQ}} \\
& =\frac{1}{2} \overrightarrow{\mathrm{OA}}+\frac{1}{2} \overrightarrow{\mathrm{AB}} \\
& =\frac{1}{2}(\overrightarrow{\mathrm{OA}}+\overrightarrow{\mathrm{AB}}) \\
& =\frac{1}{2} \overrightarrow{\mathrm{OB}}
\end{aligned}
$$

Similarly we can show that $\overrightarrow{\mathrm{SR}}=\frac{1}{2} \overrightarrow{\mathrm{OB}} \Rightarrow \overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{SR}}$ (Also check that $\overrightarrow{\mathrm{PS}}=\overrightarrow{\mathrm{QR}}$).

THREE DIMENSIONAL VECTORS

There are three special unit vectors.
$\mathbf{i}=\langle 1,0,0\rangle$ in the positive direction of x -axis;
$\mathbf{j}=\langle 0,1,0\rangle$ in the positive direction of y-axis;
$\mathbf{k}=\langle 0,0,1\rangle$ in the positive direction of z -axis.

Suppose $\mathbf{a}=\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right\rangle$. Then

$$
\begin{aligned}
\mathbf{a} & =\left\langle a_{1}, 0,0\right\rangle+\left\langle 0, a_{2}, 0\right\rangle+\left\langle 0,0, a_{3}\right\rangle \\
& =\mathrm{a}_{1}\langle 1,0,0\rangle+\mathrm{a}_{2}\langle 0,1,0\rangle+\mathrm{a}_{3}\langle 0,0,1\rangle \\
& =\mathrm{a}_{1} \mathbf{i}+\mathrm{a}_{2} \mathbf{j}+\mathrm{a}_{3} \mathbf{k}
\end{aligned}
$$

Therefore, a can be expressed in terms of the unit vectors \mathbf{i}, \mathbf{j} and \mathbf{k}.
For example, the vector $\langle 3,-5,2\rangle=\langle 3,0,0\rangle+\langle 0,-5,0\rangle+\langle 0,0,2\rangle$

$$
\begin{aligned}
& =3\langle 1,0,0)\rangle-5\langle 0,1,0\rangle+2\langle 0,0,1\rangle \\
& =3 \mathbf{i}-5 \mathbf{j}+2 \mathbf{k} .
\end{aligned}
$$

The vectors \mathbf{i}, \mathbf{j} and \mathbf{k} are referred to as standard basis vectors.

THE DOT PRODUCT

Consider two vectors a and \mathbf{b} where $\mathbf{a}=\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right\rangle$ and $\mathbf{b}=\left\langle\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}\right\rangle$. The dot product (or scalar product) of \mathbf{a} and \mathbf{b} is defined as: $\mathbf{a} . \boldsymbol{b}=\mathrm{a}_{1} \mathrm{~b}_{1}+\mathrm{a}_{2} \mathrm{~b}_{2}+\mathrm{a}_{3} \mathrm{~b}_{3}$ (similar definition for two dimensional vectors).

Properties: In the following, $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are 3 -dimensional vectors; t is a scalar.

1. $\quad \mathbf{a} \cdot \mathbf{a}=|\mathbf{a}|^{2}$
2. $\mathbf{a} \cdot \mathbf{b}=\mathbf{b} \cdot \mathbf{a}$
3. $\mathbf{a} \cdot(\mathbf{b}+\mathbf{c})=\mathbf{a} \cdot \mathbf{b}+\mathbf{a} \cdot \mathbf{c}$
4. $(\mathrm{ta}) \cdot \mathbf{b}=\mathrm{t}(\mathbf{a} \cdot \mathbf{b})=\mathbf{a} \cdot(\mathrm{tb})$
5. $\mathbf{0} . \mathbf{a}=0$

For example, if $\mathbf{a}=\langle 2,6,-3\rangle$ and $\mathbf{b}=\langle 8,-2,-1\rangle$ then $\mathbf{a} \cdot \mathbf{b}=(2 \times 8)+(6 \times(-2))+((-$ $3) \times(-1))=7$.

GEOMETRIC INTERPRETATION OF DOT PRODUCT

Consider the representations of \mathbf{a} and \mathbf{b} that start at the origin, let θ be the angle between OA and OB.

- Note that $0 \leq \theta \leq \pi$.
- For parallel vectors $\theta=0$ or π

Theorem 2: a. $\mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$.
Proof: The law of cosines applied to the triangle OAB , gives

$$
|\mathrm{AB}|^{2}=|\mathrm{OA}|^{2}+|\mathrm{OB}|^{2}-2|\mathrm{OA}||\mathrm{OB}| \cos \theta
$$

Since $|\mathrm{AB}|=|\mathbf{a}-\mathbf{b}|,|\mathrm{OA}|=|\mathbf{a}|$ and $|\mathrm{OB}|=|\mathbf{b}|$, the above equation reduces to

$$
\begin{equation*}
|\mathbf{a}-\mathbf{b}|^{2}=|\mathbf{a}|^{2}+|\mathbf{b}|^{2}-2|\mathbf{a}||\mathbf{b}| \cos \theta \tag{*}
\end{equation*}
$$

Now using the properties of the dot product we have,

$$
\begin{aligned}
|\mathbf{a}-\mathbf{b}|^{2} & =(\mathbf{a}-\mathbf{b}) \cdot(\mathbf{a}-\mathbf{b}) \\
& =\mathbf{a} \cdot \mathbf{a}-\mathbf{a} \cdot \mathbf{b}-\mathbf{b} \cdot \mathbf{a}-\mathbf{b} \cdot \mathbf{b} \\
& =|\mathbf{a}|^{2}-2 \mathbf{a} \cdot \mathbf{b}+|\mathbf{b}|^{2}
\end{aligned}
$$

Thus equation (*) gives

$$
|\mathbf{a}|^{2}-\mathbf{2} \mathbf{a} \cdot \mathbf{b}+|\mathbf{b}|^{2}=|\mathbf{a}|^{2}+|\mathbf{b}|^{2}-2|\mathbf{a}||\mathbf{b}| \cos \theta
$$

Hence $-2 \mathbf{a} \cdot \mathbf{b}=-2|\mathbf{a}||\mathbf{b}| \cos \theta$, and so $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$

Corollary: If θ is the angle between two non-zero vectors \mathbf{a} and \mathbf{b}, then

$$
\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|}
$$

Definition:

- Two non-zero vectors a and \mathbf{b} are said to be perpendicular or orthogonal (to each other) if the angle θ between them is $\pi / 2$.
- If \mathbf{a} and \mathbf{b} are orthogonal then $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \pi / 2=0$.
- Conversely if $\mathbf{a} \cdot \mathbf{b}=0$ then $\cos \theta=\pi / 2$.
- The zero vector $\mathbf{0}$ is perpendicular to all vectors.

Result: \mathbf{a} and \mathbf{b} are orthogonal if and only if $\mathbf{a} \cdot \mathbf{b}=0$.
Remark: The scalar product $\mathbf{a} . \mathbf{b}$ measures the extent to which \mathbf{a} and \mathbf{b} point in the same direction.

- If $0 \leq \theta<\pi / 2$ then $\cos \theta>0$ and so \mathbf{a}. $\mathbf{b}>0$ (a and \mathbf{b} point in the same general direction).
- If $\pi / 2<\theta \leq \pi$ then $\cos \theta<0$ and therefore \mathbf{a}. $\mathbf{b}<0$ (a and \mathbf{b} point in generally opposite directions).
- In the extreme cases, i.e. when $\theta=0$ or $\theta=\pi$ a and \mathbf{b} point exactly in the same direction or exactly in the opposite direction.

APPLICATION OF DOT PRODUCT: PROJECTIONS

Consider vectors a and \mathbf{b} with the same initial point P . Let $\mathbf{a}=\overrightarrow{P Q} ; \mathbf{b}=\overrightarrow{P R}$. Let S be the foot of the perpendicular from R to the line containing $\overrightarrow{P Q}$.

The vector with representation $\overrightarrow{P S}$ is called the vector projection of \mathbf{b} onto a and is denoted by proja \mathbf{b}.

The scalar projection of \mathbf{b} onto a (component of b along a) is the magnitude of the vector projection, which is $|\mathrm{b}| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b}.

Notation for scalar projection: compa \mathbf{b}. Since $\mathbf{a} . \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$, it follows that the scalar projection
$\operatorname{comp}_{\mathbf{a}} \mathbf{b} \quad=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}=\frac{\mathbf{a}}{|\mathbf{a}|} \cdot \mathbf{b}$

Note that the scalar projection is the dot product of \mathbf{b} with the unit vector in the direction of \mathbf{a}.

The vector projection of \mathbf{b} onto \mathbf{a}

$$
\begin{aligned}
& =\text { scalar projection } \times \text { the unit vector in the direction of } \mathbf{a} \\
& =\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|} \frac{\mathbf{a}}{\mathbf{a} \mid} \text {. }
\end{aligned}
$$

Thus $\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^{2}} \mathbf{a}$.
Exercise: Show that the orthogonal projection of \mathbf{b} denoted by $\boldsymbol{o r t h}_{\mathbf{a}} \mathbf{b}=\mathbf{b}-\operatorname{proj}_{\mathbf{a}} \mathbf{b}$ is orthogonal to the vector a .

Direction Angles and Direction Cosines

Let $\mathbf{a}=\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right\rangle$ be a non-zero vector. The direction angles of \mathbf{a} are the angles α, β and γ in the interval $[0, \pi]$ that the vector a makes with the positive x -, y - and z axes. $\cos \alpha, \cos \beta$ and $\cos \gamma$ are the direction cosines of \mathbf{a}. Consider the dot product of \mathbf{a} and \mathbf{i}.
$\mathrm{a} \bullet \mathbf{i}=|\mathbf{a}| \mathbf{i} \mid \cos \alpha$. Clearly a$\bullet \mathbf{i}=\mathrm{a}_{1}$. Thus
$\mathrm{a}_{1}=|\mathbf{a}| \cdot \cos \alpha$
$\therefore \cos \alpha=\frac{\mathrm{a}_{1}}{|\mathbf{a}|}$. Similarly $\cos \beta=\frac{\mathrm{a}_{2}}{|\mathbf{a}|} ; \cos \gamma=\frac{\mathrm{a}_{3}}{|\mathbf{a}|}$

Now, $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma$

$$
\begin{aligned}
& =\frac{\mathrm{a}_{1}^{2}}{|\mathbf{a}|^{2}}+\frac{\mathrm{a}_{2}^{2}}{|\mathbf{a}|^{2}}+\frac{\mathrm{a}_{3}^{2}}{|\mathbf{a}|^{2}} \\
& =\frac{\mathrm{a}_{1}^{2}+\mathrm{a}_{2}^{2}+\mathrm{a}_{3}^{2}}{|\mathbf{a}|^{2}}
\end{aligned}
$$

$$
=\frac{|\mathbf{a}|^{2}}{|\mathbf{a}|^{2}}
$$

$$
=1
$$

Hence we have $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$.

$$
\begin{aligned}
\text { Also } \mathbf{a} & =\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right\rangle \\
& =|\mathbf{a}|\langle\cos \alpha, \cos \beta, \cos \gamma\rangle
\end{aligned}
$$

i.e. $\frac{\mathbf{a}}{|\mathbf{a}|}=\langle\cos \alpha, \cos \beta, \cos \gamma\rangle$

Thus the direction cosines of a are the components of the unit vector in the direction of a.

Suppose that a constant force \mathbf{F} acts on an object O which moves along a direction other than that of F .

$\mathbf{F}=\overrightarrow{\mathrm{PR}}$ (force)
d: displacement vector $=\overrightarrow{\mathrm{PQ}}$

Work done $\mathrm{W}=$ component of \mathbf{F} along $\mathbf{d} \times$ distance moved
$=|\mathbf{F}| \cos \theta|\mathbf{d}|$
$=\mathbf{F} \cdot \mathbf{d}(\operatorname{dot}$ product of \mathbf{F} and $\mathbf{d})$

THE CROSS PRODUCT

Let \mathbf{a}, \mathbf{b} be vectors where $\mathbf{a}=\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right\rangle$ and $\mathbf{b}=\left\langle\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}\right\rangle$.

The cross product $\mathbf{a} \times \mathbf{b}$ is the vector defined by
$\mathbf{a} \times \mathbf{b}=\left\langle\mathrm{a}_{2} \mathrm{~b}_{3}-\mathrm{a}_{3} \mathrm{~b}_{2}, \mathrm{a}_{3} \mathrm{~b}_{1}-\mathrm{a}_{1} \mathrm{~b}_{3}, \mathrm{a}_{1} \mathrm{~b}_{2}-\mathrm{a}_{2} \mathrm{~b}_{1}\right\rangle$
Example Let $\mathbf{a}=\langle-3,2,2\rangle, \mathbf{b}=\langle 6,3,1\rangle$
$\mathbf{a} \times \mathbf{b}=\langle(2)(1)-(2)(3),(6)(2)-(-3)(1),(-3)(3)-(6)(2)\rangle$
$=\langle-4,15,-21\rangle$
or $-4 \mathbf{i}+15 \mathbf{j}-21 \mathbf{k}$
Result: For vectors \mathbf{a} and $\mathbf{b}, \mathbf{a} \times \mathbf{b}$ is orthogonal to \mathbf{a} and \mathbf{b}.
$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a}=a_{1}\left(a_{2} b_{3}-a_{3} b_{2}\right)+a_{2}\left(a_{3} b_{1}-a_{1} b_{3}\right)+a_{3}\left(a_{1} b_{2}-a_{2} b_{1}\right)$

$$
=0
$$

Similarly, $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b}=0$
Remark: $\mathbf{a} \times \mathbf{b}$ is defined only for three-dimensional vectors.

Direction of $\mathbf{a} \times \mathbf{b}$: (right hand rule)

If the fingers of your right hand curl in the direction of a rotation (angle $<180^{\circ}$) from a to \mathbf{b}, then the thumb points in the direction of $\mathbf{a} \times \mathbf{b}$.

- Theorem: If θ is the angle between a and $\mathrm{b}(0 \leq \theta \leq \pi)$ then $|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta$
- Two vectors \mathbf{a} and \mathbf{b} are parallel if and only if $\mathbf{a} \times \mathbf{b}=0$ (\mathbf{a} and \mathbf{b} : non zero)
- \quad Proof of the statement $|\mathbf{a} \times \mathbf{b}|=|\mathbf{a}||\mathbf{b}| \sin \theta$

$$
\begin{aligned}
|\mathbf{a} \times \mathbf{b}|^{2} & =\left(\mathrm{a}_{2} \mathrm{~b}_{3}-\mathrm{a}_{3} \mathrm{~b}_{1}\right)^{2}+\left(\mathrm{a}_{3} \mathrm{~b}_{1}-\mathrm{b}_{3} \mathrm{a}_{1}\right)^{2}+\left(\mathrm{a}_{1} \mathrm{~b}_{2}-\mathrm{b}_{1} \mathrm{a}_{2}\right)^{2} \\
& =\left(\mathrm{a}_{1}^{2}+\mathrm{a}_{2}^{2}+\mathrm{a}_{3}^{2}\right)\left(\mathrm{b}_{1}^{2}+\mathrm{b}_{2}^{2}+\mathrm{b}_{3}^{2}\right)-\left(\mathrm{a}_{1} \mathrm{~b}_{1}+\mathrm{a}_{2} \mathrm{~b}_{2}+\mathrm{a}_{3} \mathrm{~b}_{3}\right)^{2} \\
& =|\mathbf{a}|^{2}|\mathbf{b}|^{2}-(\mathbf{a} \cdot \mathbf{b})^{2} \\
& =|\mathbf{a}|^{2}|\mathbf{b}|^{2}-|\mathbf{a}|^{2}|\mathbf{b}|^{2} \cos ^{2} \theta \\
& =|\mathbf{a}|^{2}|\mathbf{b}|^{2}\left[1-\cos ^{2} \theta\right] \\
& =|\mathbf{a}|^{2}|\mathbf{b}|^{2} \sin ^{2} \theta \\
|\mathbf{a} \times \mathbf{b}| & =|\mathbf{a}| \mathbf{b} \mid \sin \theta\left(\sqrt{\sin ^{2} \theta}=\sin \theta \geq 0 \because, \because \leq \theta \leq \pi\right)
\end{aligned}
$$

Theorem

Assume that $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are vectors and s is a scalar.

1. $\mathbf{a} \times \mathbf{b}=-\mathbf{b} \times \mathbf{a}$
2. $(\mathrm{s} \mathbf{a}) \times \mathbf{b}=\mathrm{s}(\mathbf{a} \times \mathbf{b})=\mathbf{a} \times(\mathrm{s} \mathbf{b})$
3. $\mathbf{a} \times(\mathbf{b}+\mathbf{c})=(\mathbf{a} \times \mathbf{b})+(\mathbf{a} \times \mathbf{c})$
4. $(\mathbf{a}+\mathbf{b}) \times \mathbf{c}=(\mathbf{a} \times \mathbf{c})+(\mathbf{b} \times \mathbf{c})$
5. $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}$
6. $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})=(\mathbf{a} \cdot \mathbf{c}) \mathbf{b}-(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}$
7. $\mathbf{i} \times \mathbf{j}=\mathbf{k} ; \mathbf{j} \times \mathbf{k}=\mathbf{i} ; \mathbf{k} \times \mathbf{i}=\mathbf{j}$
8. The cross product is not associative ie $\mathbf{a} \times(\mathbf{b} \times \mathbf{c}) \neq(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$ (vector triple product)

Example

$\mathbf{i} \times(\mathbf{i} \times \mathbf{j})=\mathbf{i} \times \mathbf{k}=\mathbf{- j}$ and $(\mathbf{i} \times \mathbf{i}) \times \mathbf{j}=\mathbf{0} \times \mathbf{j}=\mathbf{0}$

Proof of 5:

Suppose $\mathbf{a}=\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right\rangle, \mathbf{b}=\left\langle\mathrm{b}_{1}, \mathrm{~b}_{2}, \mathrm{~b}_{3}\right\rangle$ and $\mathbf{c}=\left\langle c_{1}, c_{2}, c_{3}\right\rangle$.
Then $\mathbf{b} \times \mathbf{c}=\left\langle\mathrm{b}_{2} \mathrm{c}_{3}-\mathrm{b}_{3} \mathrm{c}_{2}, \mathrm{~b}_{3} \mathrm{c}_{1}-\mathrm{b}_{1} \mathrm{c}_{3}, \mathrm{~b}_{1} \mathrm{c}_{2}-\mathrm{b}_{2} \mathrm{c}_{1}\right\rangle$.
Hence $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})=\mathrm{a}_{1}\left(\mathrm{~b}_{2} \mathrm{c}_{3}-\mathrm{b}_{3} \mathrm{c}_{2}\right)+\mathrm{a}_{2}\left(\mathrm{~b}_{3} \mathrm{c}_{1}-\mathrm{b}_{1} \mathrm{c}_{3}\right)+\mathrm{a}_{3}\left(\mathrm{~b}_{1} \mathrm{c}_{2}-\mathrm{b}_{2} \mathrm{c}_{1}\right)$

$$
\begin{aligned}
& =\left(a_{2} b_{3}-a_{3} b_{2}\right) c_{1}+\left(a_{3} b_{1}-a_{1} b_{3}\right) c_{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right) c_{3} \\
& =(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}
\end{aligned}
$$

Proof of 7: Recall $\mathbf{i}=\langle 1,0,0\rangle \mathbf{j}=\langle 0,1,0\rangle$ and $\mathbf{k}=\langle 0,0,1\rangle$

$$
\mathbf{i} \times \mathbf{j}=\langle(0)(0)-(1)(0),(0)(0)-(1)(0),(1)(1)-(0)(0)\rangle=\langle 0,0,1\rangle=\mathbf{k} .
$$

Geometric interpretation of $\mathbf{a} \times \mathbf{b}$

a

$$
\begin{aligned}
|\mathbf{a} \times \mathbf{b}| & =|\mathbf{a}||\mathbf{b}| \sin \theta \\
& =\text { (base) } \times \text { (altitude) } \\
& =\text { area of parallelogram determined by a and } \mathbf{b} .
\end{aligned}
$$

Definition: $\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})$ is the scalar triple product of \mathbf{a}, \mathbf{b} and \mathbf{c}.
Geometric significance of the scalar triple product: The volume of the parallelepiped determined by \mathbf{a}, \mathbf{b} and \mathbf{c} is $|\mathbf{a} \cdot(\mathbf{b} \times \mathbf{c})|$.

Equation of a line in 3-space

A line L in the 3 -dimensional space is determined if we know a point $\mathrm{P}_{0}\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$ and the direction of the line L . Let L be a line parallel to vector v and $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ an arbitrary point on L . Assume that \mathbf{r}_{0} and \mathbf{r} are position vectors, of P_{0} and P respectively.

Suppose $\mathbf{a}=\overrightarrow{\mathrm{P}_{0} \mathrm{P}}$, then $\mathbf{r}=\mathbf{r}_{0}+\mathbf{a} \quad$ (Triangle Law)
Since \mathbf{a} and \mathbf{v} are parallel, $\mathbf{a}=\mathrm{t} \mathbf{v}$, where t is a scalar.
$\therefore \mathbf{r}=\mathbf{r}_{\mathbf{0}}+\mathrm{t} \mathbf{v}$,
We refer to (1) as the vector equation of L. Each value of t (the parameter), gives the position vector of a point on L.

If the vector $\mathbf{v}=\langle\mathrm{a}, \mathrm{b}, \mathrm{c}\rangle$, then $\mathrm{tv}=\langle\mathrm{ta}, \mathrm{tb}, \mathrm{tc}\rangle$. We can write $\mathbf{r}=\langle\mathrm{x}, \mathrm{y}, \mathrm{z}\rangle$ and $\mathbf{r}_{0}=$ $\left\langle\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right\rangle$

The equation 1 is equivalent to $\langle\mathrm{x}, \mathrm{y}, \mathrm{z}\rangle=\left\langle\mathrm{x}_{0}+\mathrm{ta}, \mathrm{y}_{0}+\mathrm{tb}, \mathrm{z}_{0}+\mathrm{tc}\right\rangle$
\Rightarrow
$\left.\begin{array}{l}\mathrm{x}=\mathrm{x}_{0}+\mathrm{ta} \\ \mathrm{y}=\mathrm{y}_{0}+\mathrm{tb} \\ \mathrm{z}=\mathrm{z}_{0}+\mathrm{tc}\end{array}\right\}$
where t is a real number.
The equation 2 gives the parametric equations of line L through $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ parallel to vector $\mathbf{v}=\langle\mathrm{a}, \mathrm{b}, \mathrm{c}\rangle$. Each value of t gives a point P on L .

Eliminating t from (2), we have $\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}-----$
These are the symmetric equations of \mathbf{L} and $\mathbf{a}, \mathbf{b}, \mathbf{c}$ are the direction numbers of \mathbf{L}.

Distance from a point to a line

To find the distance d (shortest) from the point P to the line L :
Equation of line $L: x=x_{1}+a_{1} t$

$$
y=y_{1}+a_{2} t
$$

$$
\mathrm{z}=\mathrm{z}_{1}+\mathrm{a}_{3} \mathrm{t}
$$

Drop a perpendicular from P to the line L
Let M be the foot of the perpendicular line.
The coordinates of the point M are $\left(x_{1}+a_{1} t_{1}, y_{1}+a_{2} t_{1}, z_{1}+a_{3} t_{1}\right)$ for some t_{1}
$\overrightarrow{\mathrm{PM}}=\left\langle\mathrm{x}_{1}+\mathrm{a}_{1} \mathrm{t}_{1}-\mathrm{x}_{0}, \mathrm{y}_{1}+\mathrm{a}_{2} \mathrm{t}_{1}-\mathrm{y}_{0}, \mathrm{z}_{1}+\mathrm{a}_{3} \mathrm{t}_{1}-\mathrm{z}_{0}\right\rangle$
The direction of line L is $\left\langle\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}\right\rangle=\mathbf{a}$
$\because \overrightarrow{\mathrm{PM}} \cdot \mathrm{a}=0$, we have an equation for t_{1}. Now using the value of t_{1} we can find the length $|\overrightarrow{\mathrm{PM}}|$ of the vector $\overrightarrow{P M}$. Thus the shortest distance d from P to the line L is given by $\mathrm{d}=|\overrightarrow{\mathrm{PM}}|$.

Definitions: (1) Two lines which do not intersect and are not parallel are called skew lines.
(2) Points P, Q, R are collinear if they lie on a straight line i.e. $\overrightarrow{\mathrm{PQ}}$ and $\overrightarrow{\mathrm{QR}}$ are parallel vectors.

Eg: $P(1,0,3), Q(0,2,4)$ and $R(-2,6,6)$ are collinear since

$$
\begin{aligned}
\overrightarrow{\mathrm{PQ}} & =\langle-1,2,1\rangle \text { and } \\
\overrightarrow{\mathrm{QR}} & =\langle-2,4,2\rangle \text { are parallel }
\end{aligned}
$$

DISTANCE BETWEEN TWO SKEW LINES

Consider two skew lines L_{1} and L_{2}. Let $\mathbf{s}_{\mathbf{1}}$ and $\mathbf{s}_{\mathbf{2}}$ be the directions of L_{1} and L_{2}. $\mathbf{n}=\mathbf{s}_{1} \times \mathbf{s}_{2}$ is normal to both the lines. The distance between L_{1} and L_{2} is d, given by $\mathrm{d}=|\overrightarrow{P Q} \bullet \hat{\mathbf{n}}|$ where P, Q are points on L_{1} and L_{2} and $\hat{\mathbf{n}}$ is the unit vector in the direction of \mathbf{n}.

PLANES

A line in space is completely determined by a point and a direction. Similarly to completely describe a plane in space, we need a point and a point and a vector that is orthogonal to the plane. This orthogonal vector is called a normal vector. Let $\mathrm{P}_{0}\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right.$, z_{0}) be a fixed point on the plane and $\mathbf{n}=\langle\mathrm{a}, \mathrm{b}, \mathrm{c}\rangle$ a vector normal (orthogonal) to the plane. Let $\mathrm{P}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ be an arbitrary point on the plane. Let $\mathbf{r}_{\boldsymbol{0}}$ and \mathbf{r} be the position

vectors of P_{0} and P respectively. The vector $\mathbf{r}-\mathbf{r}_{\mathbf{0}}$ is represented by $\overrightarrow{P_{0} P}$. The vector \mathbf{n} is orthogonal to every vector in the plane, in particular, it is orthogonal to the vector $\overrightarrow{P_{0} P}$. Thus $\mathbf{n} .\left(\mathbf{r}-\mathbf{r}_{\mathbf{0}}\right)=0$. That is $\mathbf{n} \cdot \mathbf{r}=\mathbf{n} . \mathbf{r}_{\mathbf{0}}$. This represents the vector equation of a plane. To obtain a Cartesian equation of a plane recall that $\overrightarrow{P_{0} P}=$ $\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle$.

Since $\overrightarrow{P_{0} P}$ is perpendicular to \mathbf{n} we have $\mathrm{n} \cdot \overrightarrow{P_{0} P}=0$
$\Leftrightarrow\langle\mathrm{a}, \mathrm{b}, \mathrm{c}\rangle \bullet\left\langle x-x_{0}, y-y_{0}, z-z_{0}\right\rangle=0$.Thus $a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0$
The above gives the equation of the plane through $\mathbf{P}_{\mathbf{0}}$ and perpendicular to $\mathbf{n}=\langle\mathrm{a}, \mathrm{b}, \mathrm{c}\rangle$ (\mathbf{n} is normal to the plane)

The general form of the Cartesian equation of the plane is $a x+b y+c z=d$

Definition

Two planes are parallel if their normal vectors are parallel.
Example: $x+2 y-3 z=4$: Plane 1

$$
2 x+4 y-6 z=3: \text { Plane } 2
$$

Normal vectors for these planes are $\langle 1,2,-3\rangle$ and $\langle 2,4,-6\rangle$. These are parallel vectors (The components are multiples of each other). Hence the planes are parallel.

Note: If two planes are not parallel then they intersect in a line. The angle between two planes is the acute angle between their normal vectors.

Distance from a point to a plane

Plane: $\mathrm{ax}+\mathrm{by}+\mathrm{cz}=\mathrm{d}$
Point $\mathrm{P}_{0}\left(\mathrm{x}_{0}, \mathrm{y}_{0}, \mathrm{z}_{0}\right)$
$\mathbf{n}:\langle\mathrm{a}, \mathrm{b}, \mathrm{c}\rangle$ normal to plane.
A: any point on the plane.
The distance from P_{0} to the plane $=\mid \operatorname{Pr}$ oj $\overrightarrow{A P}$ onto $\mathbf{n} \mid$

$$
=\left|\frac{\overrightarrow{A P} \cdot \mathbf{n}}{|\mathbf{n}|}\right|
$$

Example: Point: $\mathrm{P}(1,-1,0)$; Plane: $\mathrm{x}+\mathrm{y}-\mathrm{z}=2$; A: $(2,0,0)$ is a point on the given plane.

Distance from P to the plane $=\left|\frac{\overrightarrow{\mathrm{AP}} \cdot\langle 1,1,-1\rangle}{\sqrt{3}}\right|=\left|\frac{\langle-1,-1,0\rangle \cdot\langle 1,1,-1\rangle}{\sqrt{3}}\right|=\frac{2}{\sqrt{3}}$.

