ifference Equations Section 4.1
D " The Definite Integral

ifferential Equations

As we discussed in Section 1.1, and mentioned again at the beginning of Section 3.1, there
are two basic problems in calculus. In Chapter 3 we considered one of these, the problem
of finding tangent lines to curves in the plane; we are now ready to turn to the second,
quadrature, the problem of finding the area of a region in the plane. Although at first these
problems would seem to have no connection, in Section 4.3 we shall see that Fundamental
Theorem of Calculus relates them in an interesting and useful way. This theorem, first fully
utilized by Newton and Leibniz, reveals that the problem of quadrature involves reversing
the process of differentiation; as a consequence, the facility we developed in Chapter 3 for
handling derivatives will be very helpful in many basic quadrature problems.

y=1(x)

a b

Figure 4.1.1 Region beneath the graph of y = f(x) and over the interval [a, b]

As illustrated in Figure 4.1.1, our basic example for studying quadrature will be the
problem of finding the area of a region R in the plane which is bounded above by the
graph of a continuous function f and below by an interval [a,b] on the xz-axis. Later we
will see how to extend our techniques to more complicated planar regions. Recall that in
Section 1.1 we considered the problem of finding the area of the unit circle. In that case,
we attacked the problem by approximating the area of the circle by the area of inscribed
regular polygons, which were themselves divided into triangles. We used these to find the
area of the circle by taking the limit of the areas of the inscribed polygons as the number

1
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Figure 4.1.2 Inscribed and circumscribed rectangles for f(z) = 22 + 1

of sides went to infinity. Here we will see that it is sufficient to use rectangles, rather
than triangles, as our units of approximation. That is, we will approximate the area of
the desired region by the area of rectangles and then ask about the limit as the number of
rectangles used in the approximation goes to infinity. We begin with an example.

Example Consider the region R beneath the graph of the function f(z) = 22 + 1 and
above the interval [—1,2] on the z-axis. Let A be the area of R. If R; is the rectangle
with base on the interval [—1,2] and height f(2) = 5, then, since 5 is the maximum value
of f on [—1,2], Ry contains R. We call Ry a circumscribed rectangle for the region R.
Hence the area of R is less than the area of Ry, showing that A < 15. Similarly, if R is
the rectangle with base on the interval [—1,2] and height f(0) = 1, then, since 1 is the
minimum value of f on [—1,2], R contains Ry. We call Ry an inscribed rectangle for the
region R. Hence the area of R is greater than the area of Ry, showing that A > 3. See the
figure on the left in Figure 4.1.2.
At this point we know that

3<AL15.

To improve our approximations for A, we begin by subdividing the interval [—1, 2] into two
equal intervals, namely [—1,0.5] and [0.5,2]. If A; is the area of the region beneath the
curve over the interval [—1,0.5], we can construct inscribed and circumscribed rectangles
as we did in the last paragraph and obtain bounds for the area of A;. Indeed, the rectangle
with base on [—1,0.5] and height f(—1) = 2 circumscribes this region, while the rectangle
with base on [—1,0.5] and height f(0) =1 is inscribed in it. Hence we have

<A <3,

N W
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Figure 4.1.3 Inscribed and circumscribed rectangles for f(z) = 22 + 1

Moreover, the region beneath the curve over the interval [0.5,2] is circumscribed by a
rectangle of height f(2) = 5 and has inscribed within it a rectangle of height f(0.5) = 1.25.
So if A, is the area of this region, we have

15 15

— < Ay < —.

8 ~ 7= 2
Since

A= Al + AQ;
putting these last two results together gives us

%7 <A< E,

an improvement on our previous approximation. See the figure on the right in Figure 4.1.2.

To improve our approximation further, divide [—1, 2] into three equal intervals: [—1, 0],
[0,1], and [1,2]. You should check that the heights of the inscribed rectangles over these
intervals are 1, 1, and 2, respectively. Since each rectangle has a base of length 1, we have

A= (1)1 +(1)A)+(2)1) =4
Moreover, the heights of the circumscribed rectangles are 2, 2, and 5, respectively, and so
A< (2)(1)+(2)1) + (B)(1) = 9.

Hence we now have
4 < A<9.

See the figure on the left in Figure 4.1.3.
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It is clear that we can approximate A using inscribed and circumscribed rectangles for
any number of intervals. For example, you might check that if we use six intervals of equal
length we would have

SGEORIORIORGIORORCIOR

and

=)+ (@) OO0 () @062
showing that S

(see the figure on the right in Figure 4.1.2). Continuing in this manner, subdividing
the interval [—1,2] into smaller and smaller intervals, we would expect that we could
approximate A to any desired level of accuracy. Moreover, we would expect that the area
of the inscribed rectangles would increase toward A as the number of intervals increases,
and that the area of the circumscribed rectangles would decrease toward A. Put another
way, we might think of the area A as the unique number which is at once larger than the
area of any set of inscribed rectangles and smaller than the area of any set of circumscribed
rectangles. We will use this idea as the basis for our definition of the definite integral.

The definite integral

We now want to take the ideas of the previous example and develop a general procedure
which, when applied to the appropriate function, will yield the area of certain types of
regions in the plane. To do so, we require some preliminary terminology and notation.

Let f be a function defined on an interval [a, b]. We will not require that f be positive
on [a,b], although it will be necessary to require f(x) > 0 for all z in in order to talk
about the area between the graph of f and the interval [a,b], as in the previous example.
However, we will assume that f is bounded on [a, b]; that is, we assume there exist numbers
m and M such that m < f(x) < M for all z in [a,b]. In particular, by the Extreme
Value Theorem, f is bounded if f is continuous on [a,b] We will return to the problem of
unbounded functions in Section 4.7.

We call a set P = {xg,x1,...,Z,} a partition of the interval [a, b] if

a=Tog <11 <To<...<xp=>0.
Such a partition P divides [a, b] into n intervals, [z;_1,z;], of lengths
Ay =z — -1,
wherei =1,2,3,...,n. For each such interval [z;_1, x;], let M; be the smallest number such

that f(x) < M; for all  in [x;_1, ;] and let m; be the largest number such that f(z) > m;
for all z in [x;_1, z;]. Note that if f is continuous on [a, b], then M, is the maximum value
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of f on [x;_1,z;] and m; is the minimum value of f on [z;_1,x;], both of which are
guaranteed to exist by the Extreme Value Theorem. If f is not continuous, properties
of bounded sets of real numbers, alluded to in our discussion of bounded sequences in
Section 1.2, nevertheless guarantee the existence of the values M; and m;. Also, note
that if f(x) > 0 for all x in [x;_1,x;], then, in the language of our previous example, the
rectangle with base [x;_1, z;] and height M; is a circumscribed rectangle and the rectangle
with base [z;_1,x;] and height m; is an inscribed rectangle.
Now let

i=1
the upper sum of f with respect to the partition P, and
L(f,P) = miAzy + moAzs + - - - + myAzx,, = ZmiAxi, (4.1.2)
i=1

the lower sum of f with respect to the partition P. Note that we always have
L(f,P) <U(f, P). (4.1.3)

Also, if f(z) > 0 for all z in [a, b], then U(f, P) is the sum of the areas of the circumscribed
rectangles for the partition P and L(f, P) is the sum of the areas of the inscribed rectangles.
In that case, if A is the area beneath the graph of f and above the interval , we would
expect that we could make U(f, P) and L(f, P) arbitrarily close to A. This would imply
that A is the only number with the property that

L(f,P) < A< U(}.P) (4.1.4)

for all partitions P. This is the motivation for the following definition.

Definition Using the above notation, we say a function f is integrable on an interval
[a, b] if there exists a unique number I such that

L(f,P)<I<U(f P) (4.1.5)

for all partitions P of [a,b]. If f is integrable on [a,b], we call I the definite integral of f
on [a, b], which we denote

I:/ f(z)dx. (4.1.6)

Example Consider again our example of finding the area of the region beneath the graph
of f(z) = 22 + 1 and above the interval [—1,2] on the x-axis. Let P, denote the partition
using n + 1 equally spaced points (giving us n intervals of equal length). For examples,

Py ={-1,05,2}
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and
Ps={-1,-0.5,0,0.5,1,1.5,2}.

Our work above shows that, in our current notation,
U(f, Ps) =7.375

and
L(f, Ps) = 4.875.

Using 100 intervals, and a computer to ease the computations, we find that
U(f, Pioo) = 6.075

and
L(f, Pioo) = 5.925,

where the results have been rounded to three decimal places. This shows that if f is
integrable on [—1, 2], then

2
5.925 < / (22 4 1)dz < 6.075.

-1

Of course, we expect f to be integrable, and for the value of the definite integral to be the
sought for area under the graph.

It is not easy to verify directly from the definition that a given function is integrable on
some interval. However, it may be shown that any continuous function is integrable. The
reasons for this are rather technical, but we can give some feeling for why this should be
so. Suppose f is continuous on [a, b] and let P, = {xg, x1,x2,...,z,} denote the partition
of [a, b] using n + 1 equally spaced points. Let M, and m; be as defined above, and let

b—a

n

Axr = Ax; =

be the length of the intervals [z;_1,2;], i = 1,2,3,...,n. Given any number ¢ > 0, we
can choose n large enough (equivalently, Az small enough) so that M; — m; < € for
i =1,2,3,...,n. This fact is a consequence of the continuity of f on [a,b], although it
requires a deeper property of continuous functions on closed intervals known as uniform
continuity. We then have

OSU(f,Pn)_L(f,Pn)

i=1 =1

= Zn:(]\/[z —m;)Azx < Zn: eAx
i=1 i=1

=neAz = €(b— a).

(4.1.7)
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w

1 1 2 3 4 5 6
Figure 4.1.4 Region beneath y = 3 over the interval [0, 5]

Since € may be made arbitrarily small, it follows that the difference between upper sums
and lowers sums may be made arbitrarily small, and hence that there must be only one
number which is between the upper and lower sums for all possible partitions.

Proposition If f is continuous on [a, b], then f is integrable on [a, b].
Example We now know that f(x) = 2% + 1 is integrable on [—1, 2].

Although our motivation for this section has been the computation of area, we have
not actually defined the term. We do so now for the special case we have been considering.

Definition Given an integrable function f with f(x) > 0 for all z in an interval [a, ], let
R be the region in the plane bounded above by the curve y = f(z), below by the interval
[a, b] on the z-axis, and on the sides by the vertical lines x = a and x = b. Then we define
the area A of R to be

b
A:/ f(x)dx. (4.1.8)

Example Of course, we should verify that the above definition of area agrees with our
previous notion of area. For example, if f(z) = 3 for all z in [0, 5], then the region beneath
the graph of f and above the z-axis is a rectangle with base of length 5 and height of 3,
as shown in Figure 4.1.4. Hence we should have

5
/ 3dx = 15.
0

To verify this, let P = {zg,z1,z2,...,2,} be any partition of [0,5]. Then on any interval
[zi—1,2], 1 =1,2,3,...,n, the maximum value of f is M; = 3 and the minimum value of
f is m; = 3. Hence

U(f,P) = L(f, P) = Zn::mxi = 3imi = (3)(5) = 15,
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10 ¢t

21

Figure 4.1.5 Region beneath y = 2x over the interval [0, 4]

where we have used the fact that the sum of the lengths of the partition intervals must
equal the length of the entire interval . Thus I = 15 is the only number satisfying

L(f,P) <1 <U(f,P)

5
/ 3dz = 15,
0

Note that the previous example could be generalized to show that for any constant c
and any interval [a, b],

for all partitions P, and so

as expected.

/b cdr = c(b— a). (4.1.9)

Example To verify another previously known area, consider the function f(z) = 2z on
the interval [0,4]. Then the region beneath the graph of f and above the interval [0, 4] on
the z-axis is a triangle with base of length 4 and height 8, as shown in Figure 4.1.5. Thus
it has area

and so we should have

4
/ 2zdx = 16.
0

To verify this, let P = {xg,x1,x2,...,2Z,} be a partition of [0,4] and let m; and M; be the
minimum and maximum values, respectively, of f on [z;_1,2;], i =1,2,3,...,n. Since f
is an increasing function on [0, 4], we have m; = f(z;—1) and M; = f(x;). Thus

L(f,P) = Zf(xi_l)Axi
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and .
i=1

We will now use a technique which will be useful in the proof of the Fundamental Theorem
of Calculus in Section 4.3. Let F(z) = 2. Then F’'(x) = 2z, so F is an antiderivative
of f. By the Mean Value Theorem, for every interval [z;_1,x;] there exists a point ¢; in
[x;—1,x;] such that

F(ZEZ) — F(l‘i_l)

Li — Ti—1

Now z; — ;1 = Ax;, so from (4.1.10) we obtain

Moreover, f(z;-1) < f(c;) < f(x4), so
= flzii)Az; <Y fle)Aw; <Y fla) Az =U(f, P). (4.1.12)
=1 =1 =1
But, using (4.1.11),

chz Az = S () — Flai )

= (F(z1) = F(x0)) + (F(z2) = F(21)) + (F(x3) — F(x2)) + -
+ (F(an) = F(an-1))
= —F(xo) + (F(x1) — F(x1)) + (F(22) — F(22)) + (F(x3) — F(x3)) + -+
+ (F(zp-1) — F(xp_1)) + F(zy)
= F(x,) — F(x0).

Now zg = 0 and z,, = 4, so
F(x,)— F(x9) = F(4) — F(0) =16 — 0 = 16.
It now follows from (4.1.11) that, for any partition P,
L(f,P) <16 <U(f,P). (4.1.13)
Since we know that f is integrable on [0, 4] (it is continuous on [0, 4]), the definite integral

of f is the only number which satisfies the inequalities in (4.1.13) for any partition P.
Hence we must have .
/ 2x = 16,
0

in agreement with our geometric argument above.
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15

0.5

0.5 1 15 2
Figure 4.1.6 Region beneath y = v/4 — 22 over the interval [0, 2]

As we proceed with our study of integration we shall from time to time have occasion
to verify that areas computed using a definite integral are consistent with areas computed
by other geometric means. At the same time, we shall take this consistency as a given.
For example, we shall accept that

2
/ V4 —x2dr=m,
0

since the region beneath the curve y = v/4 — 22 and above the interval [0, 2] is one-quarter
of a circle of radius 2 centered at the origin, as shown in Figure 4.1.6.

Example It is important to realize that not all bounded functions are integrable. As an

example, consider the function

fz) = 1, if z is a rational number,
~ 10, ifzis an irrational number.

For example, f(0.12345) =1 and f (%) = 0. Let P = {xg,x1,x2,...,2,} be a partition

of [0,1]. Since every interval [z;_1,2;], ¢ = 1,2,3,...,n, contains both rational and irra-
tional numbers, the minimum value of f on [z;_1, ;] is m; = 0 and the maximum value
of fon [x;_1,x;] is M; = 1. Thus

L(f,P)=> miAz; =0
=1
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and

i=1 i=1

Hence any number between 0 and 1 lies between L(f, P) and U(f, P) for any partition P.
Since there is not a unique such number, we conclude that f is not integrable on [0, 1].

Computing a definite integral directly from the definition is usually a daunting task.
We shall take a first look at approximating definite integrals in this section, and then refine
these techniques in Section 4.2. In Section 4.3 we will look at the Fundamental Theorem
Calculus, a result which will, in certain cases, allow us to compute definite integrals exactly
with relative ease.

Riemann sums

Again let f be a function defined on an interval [a,b] and let P = {zg,z1,x2,...,2,} be
a partition of [a,b]. Recall that in the definition of the upper and lower sums, M; and
m,; are chosen, in part, so that m; < f(x) < M, for all z in [z;_1,2;], i = 1,2,3,...,n.
It follows that if we choose values c¢1,c¢2,c3,..., ¢, so that ¢; is in the ith interval of the
partition (that is, x;—1 < ¢; < x;), then

fori=1,2,3,...,n, and so
L(f,P) =) miAz; <Y fle))Az; <> MiAx; = U(f, P). (4.1.15)
=1 =1 1=1

If f is integrable, it may be shown that is always possible to choose a partition P so that
\U(f, P) = L(f,P)| <e¢ (4.1.16)

for any specified € > 0. It follows that, when f is integrable, it is always possible to find,
for any given € > 0, partitions for which

/ f(z)dx — Zf(ci)Aa:i <e (4.1.17)

for any choice of the points c1,co,c3,...,c,. In fact, it may be shown that if we let L be
the maximum length of the intervals [z;_1, x;], then it is possible to find a § > 0 such that
(4.1.17) will hold for any partition with L < 4.

The sum

> fle)Az, (4.1.18)

is called a Riemann sum, after the German mathematician G. B. F. Riemann (1826-
1866). From what we have just seen, we may use Riemann sums to approximate definite
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integrals. We will consider two important special cases of Riemann sums here (we will
look at another in Section 4.2). First, to make calculations simpler, we will restrict to
partitions with intervals of equal length. As above, let P, = {xg,21,%2,...,2,} be the
partition of [a, b] using n + 1 equally spaced points and let

b—a
n

Az =

be the length of the intervals [x;_1,z;], 1 =1,2,3,...,n. Note that

lim Az = 0.
Hence, if we choose points c¢i1,ca,c3,...,¢, with z;,_1 < ¢; < x;, then we have, for an
integrable f,
b n
/ f(z)dz = lim Zf(ci)Ax. (4.1.19)
a n—oo Py

In other words, we may approximate the definite integral f: f(x)dx to any desired level of
accuracy using Riemann sums

> fle)Ax (4.1.20)

with sufficiently large n. To do this efficiently requires specifying how the points ¢y, co, c3,
..., Cp are to be chosen. One method is to simply choose ¢; to be the right-hand endpoint
of the interval [x;_1,z;]. In that case, since the points in the partition are equally spaced,
we have

c1=x1 =29+ Ar =a+ Ax,
62:x2:x1+A$’:a+2Aw,
c3 = x3 =29+ Ax = a + 3Az, (4.1.21)

Cn = Ty = Tn—1 + Az = a +nAx.
Using these points in (4.1.20), we have
n

Z flc)Ax = sz fla+iAx). (4.1.22)

i=1 =1

This approximation is known as the right-hand rule approximation for ff f(x)dz.
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Definition If f is integrable on [a, b|, the right-hand rule approximation for the definite

integral
b
/ f(x)dx

using n intervals is given by

AR = Amif(a + iAx), (4.1.23)

i=1

where

A similar rule is derived by using the left-hand endpoints of the intervals. In this case
we choose
C1 =g =T = a,
co =21 =29+ Ar =a+ Ax,
c3 =23 = 21 + Az = a + 2Ax, (4.1.24)

Cn ==Tp-1=2Tp—2+Az=a+ (n—1)Ax.

Definition If f is integrable on [a,b], the left-hand rule approzimation for the definite

integral
b
/ f(x)dx

using n intervals is given by

n—1
AL =Az) fla+iAz), (4.1.25)
=0
where
Ap — b—a

Example Returning to our first example, suppose f(x) = 22 + 1 and let A be the area
of the region beneath the graph of f and above the interval [—1,2]. With n = 6, we have

A$:2_—<_1)21
6 2
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Figure 4.1.7 Left-hand and right-hand rule approximations for / (2 4 1)dx
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See the figure on the left in Figure 4.1.7. Similarly, the right-hand rule approximation is
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1%
2\ 4
55
= — = 6.875.
8
See the figure on the right in Figure 4.1.7. Recall that, for a partition of 6 intervals of
equal length, we computed a lower sum of 4.875 and an upper sum 7.375. Hence, as we
would expect for any Riemann sums, Ay and Agr lie between the lower and upper sums.

Using n = 100 and a computer, we find Ay, = 5.955 and Ar = 6.045, which again lie
between the lower sum of 5.925 and the upper sum of 6.075.

Example Now let A be the area of the region beneath the graph of

over the interval [1,10], as shown in Figure 4.1.8. Then

10
A:/ 1dt.
1t

In Section 6.2 we will see that this integral is equal to the natural logarithm of 10, which, to
6 decimal places, is 2.302585. The following table summarizes the left-hand and right-hand
rule approximations for A:

n AR AL |A—AR‘ |A—AL|
10 1.960214 2.770214 0.342371 0.467629
20 2.116477 2.521477 0.186108 0.218892
40 2.205491 2.407991 0.097094 0.105406
80 2.253003 2.354253 0.049582 0.051668
160 2.277534 2.328159 0.025052 0.025574
320 2.289994 2.315307 0.012591 0.012722

14 [

12|

11

08 |

06 |

04 |

02|

] 2 4 6 8 10

1
Figure 4.1.8 Region beneath y = S over the interval [1, 10]
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As we should expect, the error in our approximations decreases as the number of subdi-
visions increases. What is more interesting to note is that, in this particular case, when
the number of subdivisions is doubled, the error committed by both the right-hand and
the left-hand rules decreases by a factor of, roughly, % For example, this might lead us to
predict that the error in using 640 intervals would be about 0.0063; in fact, it turns out
to be 0.006312 for the right-hand rule and 0.006344 for the left-hand rule. This type of
behavior is typical for this method of approximation, a point we will come back to when
we investigate other methods of approximation in Section 4.2.

Properties of the definite integral

Since the integral of an integrable function may be computed as the limit of Riemann
sums, the basic properties of limits and sums hold true for integrals as well. In particular,
if f and g are integrable on [a,b] and k is any constant, then

/ab(f(x) + g(z))dx = /ab flz)dz + /abg(x)dx, (4.1.26)

b b b
/(f(m)—g(m))dm:/ f(m)dx—/ g(z)dx, (4.1.27)
and

b b
/ k:f(x)dx:k:/ f(z)dx. (4.1.28)

3
9
/ xdr = =
0 2

(since the region under the graph of y = x over the interval [0, 3] is a triangle with base of
length 3 and a height of 3) and
3
/ 4dr = 12
0

(either using (4.1.9) or the fact that the region under the graph of y = 4 is a rectangle
with base of length 3 and a height of 4), so it follows from (4.1.24) that

3 3 3
9 33
/(w+4)dx:/ xda:+/ ddr = - +12 = —.
0 0 0 2 2

Example The graph of g(t) = v/1 — t? over the interval [—1,1] is a semicircle of radius
1 centered at the origin, so

1 1
/ 5\/1—t2dt:5/ \/1—t2dt:5§.
1 —1

Example We know that
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y=1f(x

a c b

b c b
Figure 4.1.9/ f(ac)dac:/ f(ac)dac+/ f(z)dx

Now suppose f is integrable on [a, b] and ¢ is a point with a < ¢ < b. It may be shown
that f is integrable on both [a,c| and [c,b]. Moveover, using partitions which include ¢,
we may write a Riemann sum for f over [a,b] as the sum of two Riemann sums, the first
over the interval [a, | and the second over the interval [c, b]. After taking limits, it follows
that

/:f(m)dx = ch(m)dx+/cbf(m)dx. (4.1.29)

If f(x) > 0 for all z in [a, b], we may think of (4.1.29) as saying that the area under the
graph of f over the interval [a, b] is equal to the area under the graph of f over the interval
[a, c] plus the area under the graph of f over the interval [c,b]. See Figure 4.1.9.

Example Suppose

r, if0<x<1,
f(x)_{za, if1<x<2.

The region under the graph of f is shown in Figure 4.1.10. Now

/02f(a?)dm:/Olf(x)dx+/l2f(x)dx:/ledx+/123dw:%+3:;

Technically, before applying (4.1.29) in the previous example we should have verified
that f is integrable on [0, 2]. Since f is not continuous on [0, 2], its integrability does not
follow from our previous results. However, f is an example of what is known as a piecewise
continuous function, which we will now define.
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4
35
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15
1
0.5

0.5 1 15 2
2 1 2
Figure 4.1.10/O f(x)dx :/0 f(x)d:r:+/1 f(z)dx

Definition A function is said to be piecewise continuous on an interval [a, b] if there is a
partition P = {xg, 1, 22,...,x,} of [a,b] such that f is continuous on each open interval
(xi—1,;), i = 1,2,3,...,n; has limits from both the right and the left at each partition
point x;, 1 =1,2,3,...,2,_1; and has a right-hand limit at ¢ and a left-hand limit at b.

Proposition If f is piecewise continuous on [a, b|, then f is integrable on [a, b].

Example The function f in the previous example is piecewise continuous on [0, 2], and
hence integrable on [0, 2] by the previous proposition.

Now suppose f and g are both integrable on [a,b] and f(z) < g(x) for all x in [a, b].
It follows that for any given partition P, the upper sum of g will be greater than or equal
to the corresponding upper sum of f. Since the definite integral is the largest number less
than or equal to the value of any upper sum, it follows that

/a " Fayde < / ’ g(e)de. (4.1.30)

Example Since 0 < 22 < z for all z in [0, 1], we have

1 1 1
/ Odzx S/ 22dx S/ zdx.
0 0 0

1
/ Odz = 0(1 —0) =0
0

1
1

/ rdr = —,
0 2

Now

and
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0.2 0.4 0.6 0.8 1 12

1 1
Figure 4.1.11 0 < / 22dr < / zdx
0 0

so it follows that

N~

1
0§/x2§
0

See Figure 4.1.11.

Geometric interpretations

The original motivation for this section was the problem of finding the area of a region in
the plane. Given an integrable function f with f(z) > 0 for all x in an interval [a, b], we
eventually defined the area of the region beneath the graph of f and above the interval

[a,b] to be f: f(z)dz. Now suppose f(z) < 0 for all = in [a,b] and let R be the region
between the graph of f and the interval [a,b]. If S is the region beneath the graph of
y = —f(z) and above [a, b], then we have

b b
area of R = area of § = / —f(x)dx = —/ f(z)dx. (4.1.31)

Hence, in this case, f: f(x)dx is not the area of the region R, but rather

/b f(x)dx = —(area of R). (4.1.32)
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Figure 4.1.12 Region between the graph of y = z — 1 and the interval [0, 1]

Example If f(z) =z —1, then f(z) <0 for all z in [0, 1]. Since the region between the
graph of f and the interval [0, 1] on the z-axis is a triangle with area %, we must have

/Ol(x —1)dzx = —%.

More generally, we may think of f; f(x)dx as representing the difference of the area
of any regions between the graph of f and the z-axis which lie above the z-axis and the
area of those regions which lie below the x-axis. For example, we have

See Figure 4.1.12.

/7r sin(z)dx =0

—T

because the area of the region beneath the graph of y = sin(z) over the interval [0, 7] is
negated by the area of the region between the graph y = sin(x) and the interval [—, 0],
as shown in Figure 4.1.13.
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05 ¢

/05

Figure 4.1.13 Area above the z-axis cancels area beneath the x-axis

Problems

1. For each of the following, find upper and lower bounds for the area of the region
beneath the given curve over the given interval using four inscribed rectangles and
four circumscribed rectangles.

(a) y = i on [1,5] (b) y = 22 on [0, 4]
(c) y=22+1on [-2,2] (d) y =sin(x) on [0, 7]

2. Find the upper and lower sums for the following integrals using a partition with six
equal intervals.

(a) /14 3xdx (b) /_42 r?dx

() /0 e (f) /0 ' gin(2rt)dt

3. For each of the following, approximate the area beneath the graph of the function over
the given interval using the right-hand and left-hand rules with four intervals.

(a) f(z) =22 on [0,4] (b) f(x) =22 on [-2,2]
(©) g(t) = 1 on [1,9] (@) gt) =7 on [1,2
(e) h(z) =23 on [0,1] f) f®)=1—t>on [-1,1]

4. For each of the following, approximate the area beneath the graph of the function over
the given interval using the right-hand and left-hand rules with 100 intervals.

(a) f(z) =22 on [0,1] (b) g(x) = sin(z) on [0, 7]
(c) f(t)=1t>on|0,2] (d) g(z) = 2% on [-2,2]
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(e) h(x) = i on [1,2] (f) f(z) =+v1—22on [-1,1]
(g) h(0) = sec(f) on [—%, %} (h) g(t) = sin(2t) on [0, g]

Use the right-hand and left-hand rules with four intervals to approximate the following
definite integrals.

(a) /029020[3: (b) /jédx

() / " cos(t)dt (d) / | s

(e) /:11(332 — 1)dx (f) /:7; sin(z)dz

Use the right-hand and left-hand rules with 100 intervals to approximate the following
definite integrals.

(a) /0 ’ 2 dx (b) / 21 r3dx

(c) B V4 —1t2dt (d) /0 ’ sin(z)dx

(e) / 1(952 —1)dz (f) /0 ’ sin(360)d6
0 —2

(g)/_lmzi“dx (h)/_4%dt

Use geometric arguments to determine the value of each of the following definite inte-
grals.

4 3
(a) /0 xdx (b) /0 (2z + 3)dx
3 2
(C)/O V9 — 22 dx (d) /24\/4—t2dt
(e) /22 z3dx (f) /027r sin(t)dt
. Suppose

Fa) = z4+1, ifo<z<l,
1 4, if1<x<3.

Combine geometric arguments with properties of definite integrals to determine the
value of the following definite integrals.

@ [ s ) [ s
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10.

11.

12.

(©) / ' fa)da (@) / " fa)da

b
. The definition of / f(z)dz assumes a < b.

(a) Explain why it would be reasonable to define
/ f(x)dz = 0.

(b) Explain why it would be reasonable to define

/  flayde = - / " fla)da

(c) Using the definitions given in (a) and (b), and assuming that f is integrable on
the appropriate intervals, show that

/ab f(z)de = /acf(:z:)d:l;+ /cb f(z)dx

whether a < c<b,a<b<c,b<a<c,b<c<a,c<a<b orc<b<a. Note
that this generalizes (4.1.29).

whenever a > b.

Suppose f is integrable on [a,b] and m and M are constants such that m < f(z) < M
for all z in [a,b]. Show that

m(b—a)g/ f(x)dx < M(b—a).

Given that f is integrable on [a, b], it may be shown that g(z) = | f(z)| is also integrable

on [a,b]. Show that
b
|t

Hint: Use the fact that —|f(z)| < f(z) < |f(z)| for all z in [a, b].

4
/ 2zdx = 16
0

directly from the definition of the definite integral (with some help from the Mean
Value Theorem).

< / @)z

In this section we showed that
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1
1

/ rdr = —.
0 2
b 2

/ xzdx = b—
0 2

Flz) = /0 Lt

What is the relationship between F' and the function f(x) = z?

4
/ 2r = 16
0

directly from the definition of the definite integral (with some help from the Mean
Value Theorem). Use these ideas to show that

1
1
/ 22dr = =.
0 3

(a) Use these ideas to show that

(b) More generally, show that

(c) Let

13. In this section we showed that



