Lecture 6: Limits

6.1 Definition of a limit

Idea: Given a function f, we say $\lim _{x \rightarrow a} f(x)=L$ (i.e., the limit of $f(x)$ as x approaches a is L) if we can make $f(x)$ arbitrarily close to L by choosing x sufficiently close to a (without having $x=a$).

Note: Distance from $f(x)$ to L is $|f(x)-L|$ and the distance from x to a is $|x-a|$.
Definition We say the limit of $f(x)$ as x approaches a is L, written

$$
\lim _{x \rightarrow a} f(x)=L
$$

if for every $\epsilon>0$ there exists a number $\delta>0$ such that

$$
|f(x)-L|<\epsilon \text { whenever } 0<|x-a|<\epsilon
$$

Example Suppose $f(x)=x^{2}$. Then $\lim _{x \rightarrow 2} f(x)=4$.
Example Suppose

$$
f(x)= \begin{cases}x^{2}, & \text { if } x \leq 0 \\ x+1, & \text { if } x>0\end{cases}
$$

Then, for example, $\lim _{x \rightarrow-1} f(x)=1$ and $\lim _{x \rightarrow 1} f(x)=2$. But $\lim _{x \rightarrow 0} f(x)$ does not exist. However, we could write

$$
\lim _{x \rightarrow 0^{-}} f(x)=0
$$

which we call a left-hand limit, and

$$
\lim _{x \rightarrow 0^{+}} f(x)=1
$$

which we call a right-hand limit.
Note: $\lim _{x \rightarrow a} f(x)=L$ if and only if both $\lim _{x \rightarrow a^{-}} f(x)=L$ and $\lim _{x \rightarrow a^{+}} f(x)=L$

6.2 Some more examples

Example Suppose

$$
f(x)= \begin{cases}x-1, & \text { if } x \leq 0 \\ x+1, & \text { if } 0<x<2 \\ 5-x, & \text { if } x \geq 2\end{cases}
$$

Then, for example,

$$
\begin{gathered}
\lim _{x \rightarrow 4} f(x)=\lim _{x \rightarrow 4}(5-x)=1 \\
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}(x-1)=-1
\end{gathered}
$$

and

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(x+1)=1
$$

It follows from the latter two limits that $\lim _{x \rightarrow 0} f(x)$ does not exist. On the other hand,

$$
\lim _{x \rightarrow 2^{-}} f(x)=\lim _{x \rightarrow 2^{-}}(x+1)=3
$$

and

$$
\lim _{x \rightarrow 2^{+}} f(x)=\lim _{x \rightarrow 2^{+}}(5-x)=3,
$$

from which it follows that $\lim _{x \rightarrow 2} f(x)=3$.
Example Let $f(x)=\sin \left(\frac{1}{x}\right)$. Then

$$
f\left(\frac{1}{\pi}\right)=0, f\left(\frac{1}{2 \pi}\right)=0, f\left(\frac{1}{3 \pi}\right)=0, \ldots
$$

while

$$
f\left(\frac{2}{\pi}\right)=1, f\left(\frac{2}{5 \pi}\right)=1, f\left(\frac{2}{9 \pi}\right)=1, \ldots
$$

Hence $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ does not exist.

6.3 Unbounded limits and asymptotes

Example $\lim _{x \rightarrow 0} \frac{1}{x^{2}}$ does not exist, but we will write $\lim _{x \rightarrow 0} \frac{1}{x^{2}}=\infty$. Note that the line $x=0$ is a vertical asymptote for the graph of $y=\frac{1}{x^{2}}$.

Example $\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty$ and $\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty$, and once again the line $x=0$ is a vertical asymptote for the graph of $y=\frac{1}{x}$.

In general, any one of the following indicates that the line $x=a$ is a vertical asymptote for the graph of the function f :

$$
\lim _{x \rightarrow a^{+}} f(x)=\infty, \lim _{x \rightarrow a^{+}} f(x)=-\infty, \lim _{x \rightarrow a^{-}} f(x)=\infty, \lim _{x \rightarrow a^{-}} f(x)=-\infty
$$

Example Since $\lim _{x \rightarrow 2^{-}} \frac{4}{2-x}=\infty$ and $\lim _{x \rightarrow 2^{+}} \frac{4}{2-x}=-\infty$, the line $x=2$ is a vertical asymptote for the graph of $y=\frac{4}{2-x}$.

