Lecture 8: Definition of Limit

8.1 The definition of limit revisited

Recall: $\lim _{x \rightarrow a} f(x)=L$ means that for every $\epsilon>0$ there exists a $\delta>0$ such that

$$
|f(x)-L|<\epsilon \text { whenever } 0<|x-a|<\delta .
$$

Example From our previous work we know that $\lim _{x \rightarrow 2}(4 x-1)=7$. So we might ask, "How close to 2 does x have to be in order that $f(x)=4 x-1$ is within 0.01 of 7 ?" That is, we want

$$
|f(x)-7|=|4 x-1-7|=|4 x-8|<0.01 .
$$

Now $|4 x-8|=4|x-2|$, so

$$
|4 x-8|<0.01 \Longleftrightarrow 4|x-2|<0.01 \Longleftrightarrow|x-2|<\frac{0.01}{4}=0.0025
$$

That is, $|(4 x-1)-7|<0.01$ whenever $0<|x-2|<0.0025$.
More generally, for any $\epsilon>0$,

$$
|4 x-8|<\epsilon \Longleftrightarrow 4|x-2|<\epsilon \Longleftrightarrow|x-2|<\frac{\epsilon}{4}
$$

Hence if we take $\delta=\frac{\epsilon}{4}$, then $|(4 x-1)-7|<\epsilon$ whenever $0<|x-2|<\delta$, thus verifying, by the definition, that $\lim _{x \rightarrow 2}(4 x-1)=7$.

Example We will verify that $\lim _{x \rightarrow 12}\left(\frac{x}{4}-4\right)=-1$. That is, given $\epsilon>0$, we want to find $\delta>0$ such that $\left|\left(\frac{x}{4}-4\right)+1\right|<\epsilon$ whenever $0<|x-12|<\delta$. Now

$$
\left|\left(\frac{x}{4}-4\right)+1\right|=\left|\frac{x}{4}-3\right|=\frac{1}{4}|x-12|,
$$

so

$$
\left|\left(\frac{x}{4}-4\right)+1\right|<\epsilon \Longleftrightarrow|x-12|<4 \epsilon
$$

Hence if we take $\delta=4 \epsilon$, then $\left|\left(\frac{x}{4}-4\right)+1\right|<\epsilon$ whenever $0<|x-12|<\delta$, showing that $\lim _{x \rightarrow 12}\left(\frac{x}{4}-4\right)=-1$.

