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Traditionally Calculus I covers “Differential Calculus” and Calculus II
covers “Integral Calculus.” You have already seen the Riemann integral and
certain applications in your first semester of calculus. Calculus II starts off
with a collection of techniques of integration, and then moves on to polar
coordinates, parametric equations and infinite sequences and series. While
this looks like a rather mixed bag of topics, it is also possible to think of
these topics as helping us integrate functions.

It is an unfair asymmetry of calculus that integrating functions is a much
more difficult problem than differentiating functions. You can pretty much
differentiate any function you can write down simply by applying all the
various differentiation rules you learned in Calculus I. The Sum Rule, Product
Rule, Chain Rule etc. all allow you to calculate derivatives of fantastically
complicated expressions. While we may know that an antiderivative for any
continuous function on a closed interval exists, what we are usually after is
an explicit antiderivative for the function, which is useful for us in calculating
definite integrals via the Fundamental Theorem of Calculus.

Consider the following functions:

• sin x

• x sin x2

• x sin x

• sin x
x

• sin x2

We have seen a couple of methods already; inversion of the basic derivative
formulas give us some integral formulas, so for example d

dx
(− cos x) = sin x

means that
∫

sin xdx = − cos x + C. Also, we can use inversions of more
general formulas to give us general techniques; the u−substitution method is
just the Chain Rule expressed as an integral formula (see p. 299 in your text).
This allows us to evaluate the second integral in the list above. A similar
inversion of the Product Rule will give us a method known as Integration by
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Parts. We will use this to evaluate the third integral in the list after deriving
the formula.

What about the last two integrals? It turns out that no matter what
methods we use, we cannot find an elemantary antiderivative for either of
these. In order to deal with things like this, it will be necessary to develop
an entirely different way to represent functions — power series. The develop-
ment of power series representations of functions will take the better part of
this semester. For now however we will consider several common techniques
of integration.

Let’s take a look at the Product Rule for differentiation:

(fg)′(x) = f(x)g′(x) + f ′(x)g(x).

Integrating, we get∫
(fg)′(x)dx =

∫
f(x)g′(x)dx +

∫
f ′(x)g(x)dx

or

f(x)g(x) + C =
∫

f(x)g′(x)dx +
∫

f ′(x)g(x)dx

Solving for
∫

f(x)g′(x)dx gives∫
f(x)g′(x)dx = f(x)g(x)−

∫
f ′(x)g(x)dx

As a notational convenience, we let u = f(x) and dv = g′(x)dx so that
du = f ′(x)dx and v = g(x). Using this notation, we may write∫

udv = uv −
∫

vdu

This is the integration by parts formula.

Example
∫

x sin xdx

We choose u to be x, and dv to be sin x dx. Differentiating u = x gives
du
dx

= 1, or du = dx. Integrating dv = sin x dx gives v = − cos x. (We may
take the constant of integration to be zero). Notice that the combination of
u and dv must completely absorb the entire integrand.
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∫
x sin x dx = −x cos x−

∫
− cos x dx

= −x cos x + sin x + C

As an exercise, try the choice u = sin x, dv = dx and see what you get.
Will this way work just as well as the choice above?

Integration by parts gives us some very useful antiderivatives. Some ap-
plications of this technique are straightforward, as in the last example last
class. Others are a little more devious: for example, here is a simple-looking
integral which might not seem a candidate for integration by part rights away,
since it doesn’t look like a product:
Example:

∫
ln x dx

Let u = ln x and dv = dx, so du = 1
x
dx and v = x.

Now, ∫
ln xdx = x ln x−

∫
dx

= x ln x− x + C

Another lovely application:

Example:
∫

tan−1 xdx

Let u = tan−1 x and dv = dx, so du = dx
1+x2 and v = x. Now,

∫
tan−1 xdx = x tan−1 x−

∫ xdx

1 + x2

= x tan−1 x− 1

2
ln | 1 + x2 | +C

= x tan−1 x− 1

2
ln(1 + x2) + C

Sometimes it may be necessary to apply the technique more than once to
arrive at a complete answer. For example, it is easy to see with the correct
choices of u and dv that the integrals

∫
x2 sin x dx and

∫
x ln x dx will reduce

to integrals which we have already done by parts. Other examples are a bit
surprising:
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Example:
∫

ex sin x dx

We let u = ex and dv = sin x dx. Thus, du = exdx and v = − cos x.
A first application of the technique gives us∫

ex sin x dx = −ex cos x +
∫

ex cos x dx

At first blush it seems that our try here was a failure, since we ended up
with an integral which is the same difficulty as what we started with and
which we also don’t know how to do. However, let’s attempt this second
integral, again by parts, setting U = ex and dV = cos x dx.:∫

ex cos x dx = ex sin x−
∫

ex sin x dx

Substituting in this value for
∫

ex cos x dx in the previous equation gives
us ∫

ex sin x dx = −ex cos x + ex sin x−
∫

ex sin x dx

As awful as this looks, we notice that
∫

ex sin x dx apepars with different
signs on both sides of the equation; we can add this to both sides to get:

2
∫

ex sin x dx = −ex cos x + ex sin x + C ′

or
1

2

∫
ex sin x dx =

1

2
ex(sin x− cos x) + C

This kind of calculation arises more often than you might think, so please
remember this trick and the integrals which you can calculate using it. Here’s
another:

Example:
∫

sec3 x dx

Let u = sec x and dv = sec2 x dx. This seems like a very tricky thing to do
until you remember that sec2 x is something that you know how to integrate!
We get du = sec x tan x dx and v = tan x.
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∫
sec3 x dx = sec x tan x−

∫
sec x tan2 x dx

= sec x tan x−
∫

sec x(sec2 x− 1) dx

= sec x tan x−
∫

sec3 x dx +
∫

sec x dx

= sec x tan x−
∫

sec3 x dx + ln | sec x + tan x | +C ′

Combining the
∫

sec3 x dx terms into the left-hand side we get

2
∫

sec3 x dx = sec x tan x + ln | sec x + tan x | +C ′

or ∫
sec3 x dx =

1

2
sec x tan x +

1

2
ln | sec x + tan x | +C

where C = 1
2
C ′.

Note: Here we are using the fact that
∫

sec x dx = ln | sec x + tan x | +C.
This can be calculated by multiplying the integrand on both top and bottom
by sec x + tan x and observing that the new top is now the derivative of the
bottom.
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