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Section 6.5

Inverse Trigonometric Functions

In this section we will introduce the inverse trigonometric functions. We will begin with
the inverse tangent function since, as indicated in Section 6.4, we need it to complete the
story of the integration of rational functions.

Strictly speaking, the tangent function does not have an inverse. Recall that in order
for a function f to have an inverse function, for every y in the range of f there must be
exactly one x in the domain of f such that f(x) = y. This is false for the tangent function
since, for example, both tan(0) = 0 and tan(π) = 0. In fact, since the tangent function is
periodic with period π, if tan(x) = y, then tan(x + nπ) = y for any integer n. However,
the tangent function is increasing on the interval

(
−π2 ,

π
2

)
, taking on every value in its

range (−∞,∞) exactly once. Hence we may define an inverse for the tangent function
if we consider it with the restricted domain

(
−π2 ,

π
2

)
. That is, we will define an inverse

tangent function so that it takes on only values in
(
−π2 ,

π
2

)
.

Definition The arc tangent function, with value at x denoted by either arctan(x) or
tan−1(x), is the inverse of the tangent function with restricted domain

(
−π2 ,

π
2

)
.

In other words, for −π2 < y < π
2 ,

y = tan−1(x) if and only if tan(y) = x. (6.5.1)

For example, tan−1(0) = 0, tan−1(1) = π
4 , and tan−1(−1) = −π4 . In particular, note that

even though tan(π) = 0, tan−1(0) = 0 since 0 is between −π2 and π
2 , but π is not between

−π2 and π
2 .

The domain of the arc tangent function is (−∞,∞), the range of the tangent function,
and the range of the arc tangent function is

(
−π2 ,

π
2

)
, the domain of the restricted tangent

function. Moreover, since
lim

x→π
2
−

tan(x) =∞

and
lim

x→−π2 +
tan(x) = −∞,

we have
lim
x→∞

tan−1(x) =
π

2
(6.5.2)

and
lim

x→−∞
tan−1(x) = −π

2
. (6.5.3)
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Figure 6.5.1 Graph of y = tan−1(x)

Hence y = π
2 and y = −π2 are horizontal asymptotes for the graph of y = tan−1(x), as

shown in Figure 6.5.1.
To differentiate the arc tangent function we imitate the method we used to differentiate

the logarithm function. Namely, if y = tan−1(x), then tan(y) = x, so

d

dx
tan(y) =

d

dx
x.

Hence

sec2(y)
dy

dx
= 1,

from which it follows that
dy

dx
=

1
sec2(y)

.

Now
sec2(y) = 1 + tan2(y) = 1 + x2,

so we have
dy

dx
=

1
1 + x2

.

Hence we have demonstrated the following proposition.

Proposition
d

dx
tan−1(x) =

1
1 + x2

. (6.5.4)

As a consequence of the proposition, we also have∫
1

1 + x2
dx = tan−1(x) + c. (6.5.5)
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Note that 1 +x2 is an irreducible quadratic polynomial. We will see more examples of
this type in the following examples.

Example Using the chain rule, we have

d

dx
tan−1(4x2) =

8x
1 + 16x4

.

Example Evaluating
∫

tan−1(x)dx is similar to evaluating
∫

log(x)dx. That is, we will

use integration by parts with

u = tan−1(x) dv = dx

du =
1

1 + x2
dx v = x.

Then ∫
tan−1(x)dx = x tan−1(x)−

∫
x

1 + x2
dx.

Using the substitution
u = 1 + x2

du = 2xdx,

we have
1
2
du = xdx, from which it follows that∫

x

1 + x2
dx =

1
2

∫
1
u
du =

1
2

log |u|+ c =
1
2

log(1 + x2) + c.

Thus ∫
tan−1(x)dx = x tan−1(x)− 1

2
log(1 + x2) + c.

Example To evaluate
∫

1
1 + 4x2

dx, we make the substitution

u = 2x
du = 2dx.

Then
1
2
du = dx, so∫

1
1 + 4x2

dx =
1
2

∫
1

1 + u2
du =

1
2

tan−1(u) + c =
1
2

tan−1(2x) + c.

Example To evaluate
∫

1
x2 + x+ 1

dx, we first note that x2 + x + 1 does not factor,

that is, is irreducible, and so we cannot use a partial fraction decomposition. In general,
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a quadratic polynomial ax2 + bx + c is irreducible if b2 − 4ac < 0 since, in that case, the
quadratic formula yields complex solutions for the equation ax2 +bx+c = 0. For x2 +x+1
we have b2 − 4ac = −3. In this case it is helpful to simplify the function algebraically by
completing the square of the denominator, thus making the problem similar to the previous
example. That is, since

x2 + x+ 1 =
(
x+

1
2

)2

+
3
4
,

we have ∫
1

x2 + x+ 1
dx =

∫
1(

x+ 1
2

)2 + 3
4

dx =
4
3

∫
1

4
3

(
x+ 1

2

)2 + 1
dx.

Now we can make the substitution

u =

√
4
3

(
x+

1
2

)
du =

√
4
3
dx.

Then

√
3
4
du = dx, so

∫
1

x2 + x+ 1
dx =

4
3

√
3
4

∫
1

u2 + 1
du

=

√
4
3

tan−1(u) + c

=

√
4
3

tan−1

(√
4
3

(
x+

1
2

))
+ c.

Partial fraction decomposition: Irreducible quadratic factors

The last two examples illustrate techniques that we may use to evaluate the integral of
a rational function with an irreducible quadratic polynomial in the denominator. With
this we are now in a position to consider the final case of partial fraction decomposition.
Specifically, suppose we want to evaluate∫

f(x)
g(x)

dx,

where f and g are both polynomials and the degree of f is less than the degree of g.
Moreover, suppose that (ax2 + bx+ c)n is a factor of g, where n is a positive integer and
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ax2 + bx+ c is irreducible. Then the partial fraction decomposition of
f(x)
g(x)

must contain

a sum of terms of the form

A1x+B1

ax2 + bx+ c
+

A2x+B2

(ax2 + bx+ c)2
+ · · ·+ Anx+Bn

(ax2 + bx+ c)n
, (6.5.6)

where A1, A2, . . . , An and B1, B2, . . . , Bn are constants. Note that the terms in the partial
fraction decomposition corresponding to an irreducible quadratic factor differ from the
terms for a linear factor in that the numerators of the terms in (6.5.6) need not be constants,
but may be first degree polynomials themselves. As before, this is best illustrated with an
example.

Example To evaluate
∫

1 + x

x(1 + x2)
dx we need to find constants A, B, and C such that

1 + x

x(1 + x2)
=
A

x
+
Bx+ C

1 + x2
.

Combining the terms on the right, we have

1 + x

x(1 + x2)
=
A(1 + x2) + (Bx+ C)x

x(1 + x2)
.

Hence
1 + x = A(1 + x2) + (Bx+ C)x = (A+B)x2 + Cx+A.

Equating the coefficients of the polynomials on the left and right gives us the system of
equations

A+B = 0,
C = 1,
A = 1.

Thus B = −1 and

1 + x

x(1 + x2)
=

1
x

+
1− x
1 + x2

=
1
x

+
1

1 + x2
− x

1 + x2
.

Hence ∫
1 + x

x(1 + x2)
dx =

∫
1
x
dx+

∫
1

1 + x2
dx−

∫
x

1 + x2
dx

= log |x|+ tan−1(x)− 1
2

log(1 + x2) + c.

where the final integral follows from the substitution u = 1 + x2 as in an earlier example.

If, unlike this example, the partial fraction decomposition of
f(x)
g(x)

results in a term of

the form
Ax+B

(ax2 + bx+ c)n
,
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Figure 6.5.2 Graph of y = sin−1(x)

where n > 1 and ax2 + bx + c is irreducible, then the integration may still be difficult to
carry out, perhaps even requiring some of the ideas of trigonometric substitutions that we
will discuss in the next section. However, there is a limit to what should be done without
the aid of a computer, or at least a table of integrals. There is a point after which some
integrations become so complicated and time-consuming that in practice they should be
given to a computer algebra system.

The inverse sine function
The remaining trigonometric functions all have inverses when their domains are restricted
to appropriate intervals. Since the sine function is increasing on the interval

[
−π2 ,

π
2

]
,

taking on every value in its range [1, 1] exactly once, we obtain an inverse for the sine
function by restricting its domain to

[
−π2 ,

π
2

]
.

Definition The arc sine function, with value at x denoted by either arcsin(x) or sin−1(x),
is the inverse of the sine function with restricted domain

[
−π2 ,

π
2

]
.

In other words, for −π2 ≤ y ≤
π
2 ,

y = sin−1(x) if and only if sin(y) = x. (6.5.7)

For example, sin−1(0) = 0, sin−1
(

1
2

)
= π

6 , sin−1(1) = π
2 , and sin−1(−1) = −π2 . Note that

the domain of the arc sine function is [−1, 1], the range of the sine function, and the range
of the arc sine function is

[
−π2 ,

π
2

]
, the domain of the restricted sine function.The graph

of y = sin−1(x) is shown in Figure 6.5.2.
To find the derivative of the arc sine function, let y = sin−1(x). Then sin(y) = x, so

d

dx
sin(y) =

d

dx
x.

Hence
cos(y)

dy

dx
= 1,
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and so
dy

dx
=

1
cos(y)

.

Now
cos2(y) = 1− sin2(y) = 1 + x2,

so cos(y) = ±
√

1− x2. Since −π2 ≤ y ≤
π
2 , cos(y) ≥ 0. Thus cos(y) =

√
1− x2, and

dy

dx
=

1√
1− x2

.

Proposition
d

dx
sin−1(x) =

1√
1− x2

. (6.5.8)

As a consequence of this proposition, we also have∫
1√

1− x2
dx = sin−1(x) + c. (6.5.9)

Example Using the product and chain rules,

d

dx

(
x sin−1(2x)

)
=

2x√
1− 4x2

+ sin−1(2x).

Example To evaluate
∫

1√
4− x2

dx, we first note that

1
4− x2

=
1√

4
(
1− x2

4

) =
1
2

1√
1− x2

4

.

Then the substitution
u =

x

2

du =
1
2
dx

gives us ∫
1√

4− x2
dx =

∫
1√

1− u2
du = sin−1(u) + c = sin−1

(x
2

)
+ c.

The inverse secant function
Defining an inverse for the secant function is slightly more complicated than defining the
arc tangent or arc sine functions. On the interval

[
0, π2

)
, the secant function is increasing
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Figure 6.5.3 Graph of y = sec−1(x)

and takes on all values in the interval [1,∞); on the interval
(
π
2 , π

]
, the secant function

is also increasing, taking on all values in the interval (−∞, 1]. Hence between these two
intervals the secant function takes on every value in its range exactly once. From these
considerations we obtain the following definition.

Definition The arc secant function, with value at x denoted by either arcsec(x) or
sec−1(x), is the inverse of the secant function with domain restricted to the intervals[
0, π2

)
and

(
π
2 , π

]
.

Thus for 0 ≤ y < π
2 or π

2 < y ≤ π,

y = sec−1(x) if and only if sec(y) = x. (6.5.10)

For example, sec−1(2) = π
3 , sec−1(1) = 0, sec−1(−2) = 2π

3 , and sec−1(−1) = π. Note that
the domain of the arc secant function consists of the two intervals (−∞,−1] and [1,∞),
the range of the secant function, and the range is composed of the two intervals

[
0, π2

)
and(

π
2 , π

]
, the domain of the restricted secant function.

Since
lim

x→π
2
−

sec(x) =∞

and
lim

x→π
2

+
sec(x) = −∞,

it follows that
lim
x→∞

sec−1(x) =
π

2
(6.5.11)

and
lim

x→−∞
sec−1(x) =

π

2
. (6.5.12)

Thus the line y = π
2 is a horizontal asymptote for the graph of y = sec−1(x) both as x

goes to ∞ and as x goes to −∞, as shown in Figure 6.5.3.
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To find the derivative of the arc secant function, let y = sec−1(x). Then sec(y) = x, so

d

dx
sec(y) =

d

dx
x.

Hence

sec(y) tan(y)
dy

dx
= 1,

and so
dy

dx
=

1
sec(y) tan(y)

.

Now sec(y) = x and
tan2(y) = sec2(y)− 1 = x2 − 1.

Hence tan(y) = ±
√
x2 − 1. If x is in [1,∞), then 0 ≤ y < π

2 and tan(y) ≥ 0; if x is in
(−∞,−1], then π

2 < y ≤ π and tan(y) ≤ 0. Thus

sec(y) tan(y) =
{
x
√
x2 − 1, if x ≥ 1

−x
√
x2 − 1, if x ≤ −1.

Since |x| = x when x ≥ 1 and |x| = −x when x ≤ −1, it follows that

sec(y) tan(y) = |x|
√
x2 − 1.

Hence
dy

dx
=

1
|x|
√
x2 − 1

.

Proposition
d

dx
sec−1(x) =

1
|x|
√
x2 − 1

. (6.5.13)

Example Using the chain rule, we have

d

dx
sec−1(3x) =

3
|3x|
√

9x2 − 1
=

1
|x|
√

9x2 − 1
.

We will leave the definition of inverse functions for the cotangent, cosine, and cosecant
functions for the problems at the end of the section. In the next section we will see how
the arc tangent, arc sine, and arc secant functions are useful in evaluating certain integrals;
the arc cotangent, arc cosine, and arc cosecant functions could be used in similar roles,
but, wherever they are used, we could just as well use arc tangent, arc sine, or arc secant.
Hence the former, although useful in other situations, will not be as important for our
present study as the latter.



10 Inverse Trigonometric Functions Section 6.5

Problems

1. Find the derivatives of each of the following functions.

(a) f(x) = x tan−1(x) (b) g(t) = tan−1(3t2)

(c) g(x) =
sin−1(3x)

x
(d) f(x) = 3x sec−1(5x)

2. Evaluate each of the following.

(a) tan−1

(
1√
3

)
(b) tan−1(−

√
3)

(c) sin−1

(√
3

2

)
(d) sec−1

(
− 2√

3

)
(e) sin−1

(
sin
(

3π
4

))
(f) sin

(
sin−1

(
− 1√

2

))
3. Evaluate the following integrals.

(a)
∫

1
1 + 2x2

dx (b)
∫

4x
2 + x2

dx

(c)
∫

3
x2 + 4

dx (d)
∫

5
x2 + 2x+ 3

dx

(e)
∫

x

x2 + 4x+ 5
dx (f)

∫
x+ 1

x2 + 2x+ 6
dx

(g)
∫ 1

−1

1
1 + x2

dx (h)
∫ 1

3

0

1
1 + 9x2

dx

4. Evaluate the following integrals.

(a)
∫

1
x3 + x

dx (b)
∫

2 + x

x(4x2 + 1)
dx

(c)
∫

1
x2(x2 + 1)

dx (d)
∫

1
(x+ 1)(x2 + 2)

dx

(e)
∫

sin−1(x)dx (f)
∫

tan−1(3x)dx

(g)
∫

5√
1− 9x2

dx (h)
∫

1√
4− 8x2

dx

(i)
∫

3x√
1− x2

dx (j)
∫ 2

−2

1√
16− x2

dx

5. The cosine function has an inverse, called the arc cosine function, if its domain is
restricted to [0, π]. That is, for 0 ≤ y ≤ π,

y = cos−1(x) if and only if cos(y) = x.
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(a) Show that
d

dx
cos−1(x) = − 1√

1− x2
.

(b) Show that sec−1(x) = cos−1

(
1
x

)
.

(c) Use the result from (b) to find
d

dx
sec−1(x).

(d) Use the fact that
d

dx
sin−1(x) =

d

dx
(− cos−1(x))

to show that
sin−1(x) + cos−1(x) =

π

2
for all x in [−1, 1].

6. The cotangent function has an inverse, called the arc cotangent function, if its domain
is restricted to (0, π). That is, for 0 < y < π,

y = cot−1(x) if and only if cot(y) = x.

Show that
d

dx
cot−1(x) = − 1

1 + x2
.

7. The cosecant function has an inverse, called the arc cosecant function, if its domain is
restricted to the intervals

[
−π2 , 0

)
and

(
0, π2

]
. That is, for −π2 ≤ y < 0 or 0 < y ≤ π

2 ,

y = csc−1(x) if and only if csc(y) = x.

Show that
d

dx
csc−1(x) = − 1

|x|
√
x2 − 1

.

8. Evaluate
∫ ∞
−∞

1
1 + x2

dx.

9. (a) Use the fact that

tan−1(x) =
∫ x

0

1
1 + t2

dt

to find the Taylor series expansion for tan−1(x) about 0. On what interval does
this series converge?

(b) Use your result in (a) and the fact that π = 4 tan−1(1) to approximate π with an
error of no more than 0.001.

10. (a) Show that
d

dx
tan−1

(
1
x

)
= − 1

1 + x2
.

(b) Use the result from (a) to show that

tan−1(x) + tan−1

(
1
x

)
=
π

2
for all x > 0.

(c) Find a result similar to (b) for x < 0.


