Lecture 23: Limits at Infinity

23.1 Limits at infinity

Definition We say the limit of $f(x)$ as x approaches infinity is L, denoted $\lim _{x \rightarrow \infty} f(x)=L$, if for every $\epsilon>0$ there exists a number N such that

$$
|f(x)-L|<\epsilon
$$

whenever $x>N$. We say the limit of $f(x)$ as x approaches negative infinity is L, denoted $\lim _{x \rightarrow-\infty} f(x)=L$, if for every $\epsilon>0$ there exists a number N such that

$$
|f(x)-L|<\epsilon
$$

whenever $x<N$.
Note that if either $\lim _{x \rightarrow \infty} f(x)=L$ or $\lim _{x \rightarrow-\infty} f(x)=L$, then the line $y=L$ is a horizontal asymptote for the graph of f.

23.2 Examples

Example A basic example is

$$
\lim _{x \rightarrow \infty} \frac{1}{x}=0
$$

This follows from the fact that for any $\epsilon>0$,

$$
\frac{1}{x}<\epsilon
$$

provided $x>\frac{1}{\epsilon}$. Similarly,

$$
\lim _{x \rightarrow-\infty} \frac{1}{x}=0
$$

In general, for any $r>0$,

$$
\lim _{x \rightarrow \infty} \frac{1}{x^{r}}=0
$$

and

$$
\lim _{x \rightarrow-\infty} \frac{1}{x^{r}}=0
$$

Example $\quad \lim _{x \rightarrow \infty} \frac{x}{x^{2}+1}=\lim _{x \rightarrow \infty} \frac{\frac{1}{x}}{1+\frac{1}{x^{2}}}=\frac{0}{1}=0$

Example $\lim _{x \rightarrow-\infty} \frac{x}{x^{2}+1}=\lim _{x \rightarrow-\infty} \frac{\frac{1}{x}}{1+\frac{1}{x^{2}}}=\frac{0}{1}=0$
Example $\lim _{x \rightarrow \infty} \frac{3 x^{2}+4 x-6}{8 x^{2}+6 x+1}=\lim _{x \rightarrow \infty} \frac{3+\frac{4}{x}-\frac{6}{x^{2}}}{8+\frac{6}{x}+\frac{1}{x^{2}}}=\frac{3}{8}$
Example $\lim _{x \rightarrow \infty} \frac{4 x-6}{8 x^{3}+8}=\lim _{x \rightarrow \infty} \frac{\frac{4}{x^{2}}-\frac{6}{x^{3}}}{8+\frac{8}{x^{3}}}=\frac{0}{8}=0$
Example $\lim _{x \rightarrow \infty} \frac{8-4 x^{2}}{x+4}=\lim _{x \rightarrow \infty} \frac{\frac{8}{x}-4 x}{1+\frac{4}{x}}=-\infty$
Example $\lim _{x \rightarrow \infty} \frac{x+1}{\sqrt{2 x^{2}+1}}=\lim _{x \rightarrow \infty} \frac{1+\frac{1}{x}}{\sqrt{2+\frac{1}{x^{2}}}}=\frac{1}{\sqrt{2}}$
Example $\lim _{x \rightarrow-\infty} \frac{x+1}{\sqrt{2 x^{2}+1}}=\lim _{x \rightarrow-\infty} \frac{1+\frac{1}{x}}{-\sqrt{2+\frac{1}{x^{2}}}}=-\frac{1}{\sqrt{2}}$
Example $\quad \lim _{x \rightarrow \infty}\left(x^{3}-x^{2}\right)=\lim _{x \rightarrow \infty} x^{3}\left(1-\frac{1}{x}\right)=\infty$
Example $\lim _{x \rightarrow-\infty}\left(x^{3}-x^{2}\right)=\lim _{x \rightarrow-\infty} x^{3}\left(1-\frac{1}{x}\right)=-\infty$
Example $\lim _{x \rightarrow \infty}(x-\sqrt{x+1})=\lim _{x \rightarrow \infty} x\left(1-\sqrt{\frac{1}{x}+\frac{1}{x^{2}}}\right)=\infty$
Example $\lim _{x \rightarrow-\infty}\left(x+\sqrt{x^{2}+1}\right)=\lim _{x \rightarrow-\infty} \frac{x^{2}-\left(x^{2}+1\right)}{x-\sqrt{x^{2}+1}}=\lim _{x \rightarrow-\infty} \frac{-1}{x-\sqrt{x^{2}+1}}=0$
Example Let $f(x)=\frac{3 x+2}{x-1}$. Then

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{3+\frac{2}{x}}{1-\frac{1}{x}}=3
$$

and

$$
\lim _{x \rightarrow-\infty} f(x)=\lim _{x \rightarrow-\infty} \frac{3+\frac{2}{x}}{1-\frac{1}{x}}=3
$$

so the line $y=3$ is a horizontal asymptote for the graph of f. Moreover,

$$
\lim _{x \rightarrow 1^{-}} f(x)=-\infty
$$

and

$$
\lim _{x \rightarrow 1^{+}} f(x)=\infty
$$

so the line $x=1$ is a vertical asymptote for the graph of f. Also,

$$
f^{\prime}(x)=\frac{(x-1)(3)-(3 x+2)(1)}{(x-1)^{2}}=-\frac{5}{(x-1)^{2}}
$$

and

$$
f^{\prime \prime}(x)=10(x-1)^{-3}=\frac{10}{(x-1)^{3}}
$$

Hence f^{\prime} and $f^{\prime \prime}$ are both undefined at $x=0$, and f is decreasing on both $(-\infty, 1)$ and on $(1, \infty)$, while the graph of f is concave downward on $(-\infty, 1)$ and concave upward on $(1, \infty)$. With this information, we can sketch the graph of f.

Graph of $f(x)=\frac{3 x+2}{x-1}$

