Lecture 23: Limits at Infinity

23.1 Limits at infinity

Definition We say the limit of f(x) as x approaches infinity is L, denoted lim f(z) =L,
r— 00
if for every € > 0 there exists a number N such that

[f(x) — L] <e

whenever x > N. We say the limit of f(z) as x approaches negative infinity is L, denoted
lim f(x)= L, if for every e > 0 there exists a number N such that

r—r—00

[f(x) — L] <e

whenever x < N.

Note that if either lim f(x) = L or lim f(z) = L, then the line y = L is a horizontal
asymptote for the graph of f.

23.2 Examples

Example A basic example is
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This follows from the fact that for any € > 0,

provided z > % Similarly,

In general, for any r > 0,
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Let f(z) = iy Then
r—1
3+2
342
L fla) = lim o =3,

so the line y = 3 is a horizontal asymptote for the graph of f. Moreover,

lim f(z)=—o0
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and

i, f)=o0

so the line z = 1 is a vertical asymptote for the graph of f. Also,

oy @=1B) - Be+2)1) 5
f(z) = (z — 1) T @12

and
10

(x —1)%
Hence f’ and f” are both undefined at = 0, and f is decreasing on both (—oo, 1) and

on (1,00), while the graph of f is concave downward on (—o0, 1) and concave upward on
(1,00). With this information, we can sketch the graph of f.
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Graph of f(z) = ?fjl




