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Section 2.3

Limits And The Notion
Of Continuity

Of particular interest in mathematics and its applications to the physical world are func-
tional relationships in which the dependent variable changes continuously with changes in
the independent variable. Intuitively, changing continuously means that small changes in
the independent variable do not produce abrupt changes in the dependent variable. For
example, a small change in the radius of a circle does not produce an abrupt change in
the area of the circle; we would say that the area of the circle changes continuously with
the radius of the circle. Similarly, a small change in the height from which some object
is dropped will result in a related small change in the object’s terminal velocity; hence
terminal velocity is a continuous function of height. On the other hand, when an electri-
cal switch is closed, there is an abrupt change in the current flowing through the circuit;
the current flow through the circuit is not a continuous function of time. The purpose
of this section is to introduce the terminology and concepts that will give us a proper
mathematical basis for discussing continuity in the next section.

To begin our study of continuity, we will first look at two examples of functions which
are not continuous. In this way we will discover what properties to exclude when forming
our definition of a continuous function.

Example Consider the function H defined by

H(t) =
{

0, if t < 0,
1, if t ≥ 0. (2.3.1)

This function, known as the Heaviside function, might be used in connection with modeling
the current passing through a switch which is open until time t = 0 and then closed. The
graph of this function consists of two horizontal half-lines with a vertical gap of unit length
at the origin, as shown in Figure 2.3.1. Since this function has a break in its graph at 0,
its output changes abruptly as t passes from negative values to positive values. In fact, if
t < 0, H(t) = 0 no matter how close t is to 0, whereas if t > 0, H(t) = 1 no matter how
close t is to 0. Hence, near 0, small changes in t may result in sudden changes in H(t).
We say that H has a discontinuity at t = 0.

In this section we will develop the language and notation necessary to describe this
situation mathematically. In particular, note that for any sequence {tn} with tn < 0 for
all n and lim

n→∞
tn = 0, we have

lim
n→∞

H(tn) = 0

since H(tn) = 0 for all n. We say that the limit of H(t) as t approaches 0 from the left is
0, which we denote by

lim
t→0−

H(t) = 0.

1
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Figure 2.3.1 Graph of the Heaviside function

However, for any sequence {tn} with tn > 0 for all n and lim
n→∞

tn = 0, we have

lim
n→∞

H(tn) = 1

since H(tn) = 1 for all n. We say that the limit of H(t) as t approaches 0 from the right
is 1, which we denote by

lim
t→0+

H(t) = 1.

Since these two limiting values do not agree, we say that H(t) does not have a limit as
t approaches 0. Hence, in this case, the discontinuity of H at 0 is characterized by the
absence of a limiting value for H(t) at 0. In the next section we will make the existence
of a limiting value one of the criteria for a function to be continuous at a point.

Example Now consider the function

g(x) =

{−x, if x < 0,
1, if x = 0,
x, if x > 0.

As with the previous example, this function does not change continuously as x passes from
negative to positive values. However, the discontinuity arises in a different manner. Note
that if {xn} is a sequence with xn < 0 for all n and lim

n→∞
xn = 0, then

lim
n→∞

g(xn) = lim
n→∞

(−xn) = − lim
n→∞

xn = 0.

Thus
lim
x→0−

g(x) = 0.

Similarly, if {xn} is a sequence with xn > 0 for all n and lim
n→∞

xn = 0, then

lim
n→∞

g(xn) = lim
n→∞

xn = 0.



Section 2.3 Limits And The Notion Of Continuity 3

-6 -4 -2 2 4 6

1

2

3

4

5

Figure 2.3.2 Graph of y = g(x)

Thus
lim
x→0+

g(x) = 0.

Hence in this case g(x) does have a limiting value as x approaches 0 and we can write

lim
x→0

g(x) = 0.

However, there is still an sudden change in the value of the function at 0 because g(0) = 1,
not 0. Graphically, this shows up as a hole in the graph of g at the origin, as shown
in Figure 2.3.2. Thus the abrupt change in values of g(x) results not from the lack of a
limiting value as x approaches 0, but rather from the fact that

g(0) = 1 6= 0 = lim
x→0

g(x).

This illustrates another type of behavior that we will have to exclude in our definition of
continuity.

These examples illustrate two ways in which a function may fail to be continuous. The
definition which we will discuss in Section 2.4 essentially says that a function is continuous
if it does not have either of the problems that we have seen with H and g. However,
before pursuing this question further, we must first introduce the notion of a limit for a
function defined on an interval of real numbers. We have already seen the pattern for this
definition in the previous examples. Namely, in order to define, for some function f , the
limit of f(x) as x approaches some number c, we consider sequences {xn} that converge
to c and ask if the sequence {f(xn)} has a limit. Hence we reduce our new question to the
old problem of limits of sequences that we considered back in Section 1.2. However, we
must be careful about two points. First, there will always be more than one sequence {xn}
which converges to a given point c. As we saw in the examples, in order to understand
the behavior of a function near c, we must take into account how the function behaves on
all possible sequences that converge to c. Second, we want the limit to describe what is
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happening to the function for values of x close to c, but not equal to c. Thus we must
restrict the sequences {xn} to those for which xn 6= c for all values of n. With these ideas
in mind, we now have the following definition.

Definition Let I be an open interval and let c be a point in I. Let J be the set consisting
of all points of I except the point c; that is, J = {x | x is in I, x 6= c}. Suppose J is in the
domain of the function f . We say the limit of f(x) as x approaches c is L, denoted

lim
x→c

f(x) = L, (2.3.2)

if for every sequence {xn} of points in J we have

lim
n→∞

f(xn) = L (2.3.3)

whenever
lim
n→∞

xn = c. (2.3.4)

In other words, to determine the value of lim
x→c

f(x), we ask for the limit of the sequence

{f(xn)}, where {xn} is any sequence in J which is approaching c. If {f(xn)} approaches
L for all such sequences , then L is the limit of f(x) as x approaches c.

We define one-sided limits in a similar fashion. Namely, if J is an open interval of the
form (c, b) in the domain of f , then we say the limit of f(x) as x approaches c from the
right is L, denoted

lim
x→c+

f(x) = L, (2.3.5)

if for every sequence {xn} of points in J we have

lim
n→∞

f(xn) = L (2.3.6)

whenever
lim
n→∞

xn = c. (2.3.7)

Similarly, if J is an open interval of the form (a, c) in the domain of f , then we say the
limit of f(x) as x approaches c from the left is L, denoted

lim
x→c−

f(x) = L, (2.3.8)

if for every sequence {xn} of points in J we have

lim
n→∞

f(xn) = L (2.3.9)

whenever
lim
n→∞

xn = c. (2.3.10)
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Note that the existence of a one-sided limit only requires that the limiting value of {f(xn)}
be the same for all sequences {xn} which approach c from the same side, whereas the
existence of a limit requires that the limiting value of be the same for all sequences {xn}
which approach c. In particular, this means that if

lim
x→c

f(x) = L

then we must have both
lim
x→c+

f(x) = L

and
lim
x→c−

f(x) = L.

Not surprisingly, this also works in the other direction; in general, we have

lim
x→c

f(x) = L if and only if both lim
x→c+

f(x) = L and lim
x→c−

f(x) = L. (2.3.11)

Since the above definitions are all in terms of limits of sequences, we may use all the
properties of limits of sequences developed in Section 1.2 when discussing the limit of a
function defined on an interval of real numbers.

Example Consider the constant function f(x) = 2 for all x. To compute, for example,
lim
x→3

f(x), we need to compute lim
n→∞

f(xn) for an arbitrary sequence {xn} with lim
n→∞

xn = 3.
For such a sequence, we have

lim
n→∞

f(xn) = lim
n→∞

2 = 2.

Hence
lim
x→3

f(x) = 2.

In fact, it should be easy to see that for any value of c

lim
x→c

f(x) = lim
x→c

2 = 2,

and, more generally, for any constant k,

lim
x→c

k = k.

Example Suppose f(x) = x. To find lim
x→5

f(x), first let {xn} be any sequence with
lim
n→∞

xn = 5. Then

lim
n→∞

f(xn) = lim
n→∞

xn = 5,

so
lim
x→5

f(x) = 5.
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In fact, we could replace 5 by an arbitrary c in this computation and obtain the general
result that

lim
x→c

x = c. (2.3.12)

Example To find lim
x→6

x2, let {xn} be any sequence with lim
n→∞

xn = 6. Then

lim
n→∞

f(xn) = lim
n→∞

x2
n =

(
lim
n→∞

xn

)2

= 62 = 36.

Thus
lim
x→6

x2 = 36.

Again we can generalize this statement by replacing 6 by an arbitrary c, in which case we
have

lim
x→c

x2 = c2.

Moreover, we may replace the power 2 by any rational number p for which xp and cp are
defined and have

lim
x→c

xp = cp. (2.3.13)

Example Let f(x) = 4x3 − 6x2 + x − 7. To find lim
x→2

f(x), let {xn} be any sequence
with lim

n→∞
xn = 2. Then

lim
n→∞

f(xn) = lim
n→∞

(4x3
n − 6x2

n + xn − 7)

= 4
(

lim
n→∞

xn

)3

− 6
(

lim
n→∞

xn

)2

+ lim
n→∞

xn − 7

= (4)(23)− (6)(22) + 2− 7 = 3.

Hence
lim
x→2

f(x) = 3,

which is just f(3).

Example Now let f be an arbitrary polynomial, say,

f(x) = amx
m + am−1x

m−1 + · · ·+ a2x
2 + a1x+ a0

for some constants a0, a1, a2, . . . , am. If {xn} is any sequence with limn→∞ xn = c, then

lim
n→∞

f(xn) = lim
n→∞

(amxmn + am−1x
m−1
n + · · ·+ a2x

2
n + a1xn + a0)

= am

(
lim
n→∞

xn

)m
+ am−1

(
lim
n→∞

xn

)m−1

+ . . .+ a2

(
lim
n→∞

xn

)2

+ a1

(
lim
n→∞

xn

)
+ a0

= amc
n + am−1c

m−1 + · · ·+ a2c
2 + a1c+ a0

= f(c).
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Hence, for any polynomial f and any real number c,

lim
x→c

f(x) = f(c).

The previous example is important enough to state as a proposition.

Proposition If f is a polynomial and c is any real number, then

lim
x→c

f(x) = f(c). (2.3.14)

If we combine this result with our result about the limits of quotients in Section 1.2,
we have the following proposition.

Proposition If f and g are both polynomials and c is any real number for which g(c) 6= 0,
then

lim
x→c

f(x)
g(x)

=
f(c)
g(c)

. (2.3.15)

In short, if h is a rational function and h is defined at c, then the value of the limit of
h(x) as x approaches c is simply the value of h at c. That is,

lim
x→c

h(x) = h(c) (2.3.16)

for any rational function h which is defined at c.

Example Using our result about polynomials, we have

lim
x→2

(3x4 − 6x+ 12) = (3)(24)− (6)(2) + 12 = 48.

Example Using our result about rational functions, we have

lim
x→3

3x+ 4
2x2 + 2x− 1

=
(3)(3) + 4

(2)(32) + (2)(3)− 1
=

13
23
.

Example Now consider

lim
x→2

x2 − 4
x− 2

.

Note that our result about the limits of rational functions does not apply here since the
denominator is 0 at x = 2. However, since the numerator is also 0 at x = 2, the numerator
and the denominator must have a common factor of x− 2. Canceling this common factor
will simplify the problem and enable us to evaluate the limit. That is,

lim
x→2

x2 − 4
x− 2

= lim
x→2

(x− 2)(x+ 2)
x− 2

= lim
x→2

(x+ 2) = 4.
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Figure 2.3.3 Graph of f(x) = x2−4
x−2

Although technical, it is worth noting that the functions

f(x) =
x2 − 4
x− 2

and
g(x) = x+ 2

are different functions. In particular, f is not defined at x = 2, whereas g is. However, for
every point x 6= 2, f(x) = g(x). As a result,

lim
x→2

f(x) = lim
x→2

g(x),

since the limits depend only on the values of f and g for points close to, but not equal to,
2. See the graph of f in Figure 2.3.3.

Example As another example of the technique used in the previous example, we have

lim
t→−1

t2 − 1
t3 + 1

= lim
t→−1

(t+ 1)(t− 1)
(t+ 1)(t2 − t+ 1)

= lim
t→−1

t− 1
t2 − t+ 1

=
−1− 1

1 + 1 + 1
= −2

3
.

In the last two examples, we have used the algebraic fact that if c is a root of a
polynomial f(x), then x − c is a factor of f(x). In particular, this means that if both
the numerator and the denominator of a rational function are 0 at x = c, then they have
a common factor of x − c. However, if the numerator is not 0 at c, but the limit of the
denominator is 0, then the limit will not exist. For example, if

f(x) =
1
x2
,
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then lim
x→0

f(x) does not exist, since dividing 1 by x2
n, where {xn} is a sequence with

lim
n→∞

xn = 0, will always result in a sequence of positive numbers which are growing
without bound. Borrowing from the notation we developed in Section 1.2, we may write

lim
x→0

1
x2

=∞.

As before, we must be careful to remember that this notation means that, although the
function does not have a limit as x approaches 0, the value of the function grows without
any bound as x approaches 0. Similarly, since

1
x
> 0

when x > 0, we have

lim
x→0+

1
x

=∞

and, since
1
x
< 0

when x < 0,

lim
x→0−

1
x

= −∞.

However, since

f(x) =
1
x

behaves differently as x approaches 0 from the right than it does when x approaches 0
from the left, all we can say about the limit of f(x) as x approaches 0 is that it does not
exist.

Graphically, for a given function f ,

lim
x→c−

f(x) =∞

or
lim
x→c−

f(x) = −∞

tells us that the graph of f will approach the vertical line x = c asymptotically as x
approaches c from the left. The graph will go off along x = c in the positive direction in
the first case and in the negative direction in the second case. Similar remarks hold for x
approaching c from the right when

lim
x→c+

f(x) =∞

or
lim
x→c+

f(x) = −∞.
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Figure 2.3.4 Graph of y = x
2−x

Example Since 2− x > 0 when x < 2 and 2− x > 0 when x > 2, it follows that

lim
x→2−

x

2− x
=∞

and
lim
x→2+

x

2− x
= −∞.

It follows that the line x = 2 is a vertical asymptote for the graph of

y =
x

2− x
,

with the curve going off in the positive direction from the left and in the negative direction
from the right. See Figure 2.3.4

The next examples illustrate the use of one-sided limits, using (2.3.8), in determining
the existence of certain limits.

Example Suppose

g(z) =
{
z2 + 1, if z ≤ 1,
3z + 4, z > 1.

Then, since g(z) = z2 + 1 when z < 1,

lim
z→1−

g(z) = lim
z→1−

(z2 + 1) = 2

and, since g(z) = 3z + 4 when z > 1,

lim
z→1+

g(z) = lim
z→1+

(3z + 4) = 7.

Since these limits are not the same, we know from (2.3.11) that g(z) does not have a
limiting value as z approaches 1. Graphically, we see this as a break in the graph of g at
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Figure 2.3.5 Graph of y = g(z)

z = 1, as shown in Figure 2.3.5. Note, however, that for any c 6= 1, lim
z→c

g(z) = g(c). For
example

lim
z→−4

g(z) = lim
z→−4

(z2 + 1) = 17.

Example Now consider

h(t) =
{

2t+ 3, if t ≤ 2,
2t2 − 1, if t > 2.

Then
lim
t→2−

h(t) = lim
t→2−

(2t+ 3) = 7

and
lim
t→2+

h(t) = lim
t→2+

(2t2 − 1) = 7.

In this case both one-sided limits are equal to 7, so we have, using (2.3.11),

lim
t→2

h(t) = 7.

Graphically, the graph of h does not have a break at t = 2, even though the formula for
computing h(t) changes at this point. See Figure 2.3.6.

We may also use limits to inquire into the behavior of the values of a function f as x
increases, or decreases, without bound. This leads to the following definition.

Definition Suppose f is a function defined on an interval J of the form (a,∞). We say
that the limit of f(x) as x approaches ∞ is L, denoted

lim
x→∞

f(x) = L, (2.3.17)

if for every sequence {xn} in J we have

lim
n→∞

f(xn) = L (2.3.18)
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Figure 2.3.6 Graph of y = h(t)

whenever
lim
n→∞

xn =∞. (2.3.19)

Similarly, suppose f is a function defined on an interval J of the form (−∞, b). We say
that the limit of f(x) as x approaches −∞ is L, denoted

lim
x→−∞

f(x) = L, (2.3.20)

if for every sequence {xn} in J we have

lim
n→∞

f(xn) = L (2.3.21)

whenever
lim
n→∞

xn = −∞. (2.3.22)

Example Suppose {xn} is a sequence and lim
n→∞

xn =∞. Given ε > 0, there must exist
an integer N such that

xn >
1
ε

whenever n > N . Hence
1
xn

< ε

whenever n > N . That is,

lim
n→∞

1
xn

= 0.

Since this true for any such sequence {xn}, it follows that

lim
n→∞

1
x

= 0.
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In a similar fashion, we may show that

lim
n→−∞

1
x

= 0.

With these two basic limits, it is possible to compute limits of these types for any rational
function using the same techniques we used in Section 1.2. Namely, given a rational
function, dividing numerator and denominator by the highest power appearing in the
denominator simplifies the expression to a form where the limit may be evaluated easily.

Example lim
x→∞

3x2 + 4x− 6
2x2 − 6x+ 2

= lim
x→∞

3 +
4
x
− 6
x2

2− 6
x

+
2
x2

=
3
2
.

Example lim
x→∞

3x2 − 6x
4x3 + 2

= lim
x→∞

3
x
− 6
x2

4 +
2
x3

=
0
4

= 0.

Example We have

lim
x→−∞

4x3 − 3
2x2 + 6

= lim
x→−∞

4x− 3
x2

2 +
6
x2

= −∞,

since the denominator is approaching 2 while the numerator decreases without bound as
x goes to −∞. Note that, as usual, although the limit does not exist, we make use of this
notation to indicate the manner in which the limit fails to exist.

Graphically, lim
x→∞

f(x) = L tells us that the graph of y = f(x) approaches the hori-

zontal line y = L asymptotically as x increases without bound. Similarly, lim
x→−∞

f(x) = L

tells us that the graph of y = f(x) approaches the horizontal line y = L asymptotically as
x decreases without bound.

Example Since

lim
x→∞

x

x2 + 1
= lim
x→∞

1
x

1 +
1
x2

= 0

and

lim
x→−∞

x

x2 + 1
= lim
x→−∞

1
x

1 +
1
x2

= 0,

we know that the line y = 0, that is, the x-axis, is a horizontal asymptote for the graph of

y =
x

x2 + 1
.
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Figure 2.3.7 Graph of y = x
x2+1

Moreover, since
x

x2 + 1
> 0

for x > 0 and
x

x2 + 1
< 0

for x < 0, we know that the approach to the x-axis is from above as x increases and from
below as x decreases. See Figure 2.3.7.

The following proposition summarizes the basic properties of limits. These are essen-
tially restatements of the properties of limits of sequences that we discussed in Section 1.2.
The fact that they hold here follows from the way we have defined limits in this section in
terms of limits of sequences. Moreover, the properties listed in this proposition also hold
for one-sided limits.

Proposition Suppose lim
x→c

f(x) = L and lim
x→c

g(x) = M , where L andM are real numbers
and c is a real number, ∞, or −∞. Then

lim
x→c

kf(x) = kL for any constant k, (2.3.23)

lim
x→c

(f(x) + g(x)) = L+M, (2.3.24)

lim
x→c

(f(x)− g(x)) = L−M, (2.3.25)

lim
x→c

(f(x)g(x)) = LM, (2.3.26)

lim
x→c

f(x)
g(x)

=
L

M
, (2.3.27)

and, provided p is a rational number for which (f(x))p and Lp are defined,

lim
x→c

(f(x))p = LP . (2.3.28)
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Example Using (2.3.28), we have

lim
x→4

√
x2 + 3 =

√
lim
x→4

(x2 + 3) =
√

19.

Example Using the fact hat

√
x2 = |x| =

{
−x, if x < 0,
x, if x ≥ 0,

we have
lim
x→∞

4x√
x2 + 1

= lim
x→∞

4√
x2 + 1
x

= lim
x→∞

4√
x2 + 1√
x2

= lim
x→∞

4√
x2 + 1
x2

= lim
x→∞

4√
1 +

1
x2

= 4

and
lim

x→−∞

4x√
x2 + 1

= lim
x→−∞

4√
x2 + 1
x

= lim
x→−∞

4√
x2 + 1
−
√
x2

= lim
x→−∞

4

−
√
x2 + 1
x2

= lim
x→−∞

4

−
√

1 +
1
x2

= −4.

Hence the lines y = 4 and y = −4 are both horizontal asymptotes for the graph of

y =
4x√
x2 + 1

.

See Figure 2.3.8.



16 Limits And The Notion Of Continuity Section 2.3

-10 -5 5 10

-4

-2

2

4

Figure 2.3.8 Graph of y = 4x√
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Problems

1. Evaluate the following limits.

(a) lim
x→2

(4x2 − 3x) (b) lim
x→3

(x3 − 2x+ 3)

(c) lim
t→1

t2 − 3
t+ 5

(d) lim
z→−2

z + 2
z2 + 3

2. Evaluate the following limits.

(a) lim
x→2

x3 − 8
x+ 2

(b) lim
x→3

x2 − x− 6
x− 3

(c) lim
s→−1

s3 + 1
s4 − 1

(d) lim
x→1

√
x− 1
x− 1

(e) lim
t→2

t3 − 8
t− 2

(f) lim
x→1

x3 − 1
x2 − 1

(g) lim
u→4

u

(u− 4)2
(h) lim

x→−2

x

x+ 2

3. Evaluate the following limits.

(a) lim
x→1+

(3x2 + 4) (b) lim
x→3−

1
x− 3

(c) lim
x→3+

1
x− 3

(d) lim
t→−2+

t

t+ 2

(e) lim
t→−2−

t

t+ 2
(f) lim

x→10−

x2 − 9x− 10
x2 − 8x− 20

4. Evaluate the following limits.

(a) lim
x→2+

bxc (b) lim
x→2−

bxc

(c) lim
x→3−

dxe (d) lim
x→3+

dxe
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(e) lim
x→0+

bcos(x)c (f) lim
x→0+

dsin(x)e

5. Suppose

g(z) =
{

3z − 1, if z < 2,
7− z, if z ≥ 2.

(a) Sketch the graph of g.
(b) Find lim

z→2−
g(z).

(c) Find lim
z→2+

g(z).

(d) Does lim
z→2

g(z) exist? If so, what is its value?

6. Suppose

h(t) =
{

2t+ 1, if t ≤ 1,
3t− 1, if t > 1.

(a) Sketch the graph of h.
(b) Find lim

t→1−
h(t).

(c) Find lim
t→1+

h(t).

(d) Does lim
t→1

h(t) exist? If so, what is its value?

7. Evaluate the following limits.

(a) lim
x→∞

(3x+ 4) (b) lim
x→∞

x3 + 3x− 1
2x3 − x2 + 21

(c) lim
u→∞

u4 + 3u− 6
3u2 + 1

(d) lim
z→∞

4z2 − 3z + 10
2z3 + 14z + 9

(e) lim
x→−∞

x5 − 6x+ 13
x2 + 18x− 25

(f) lim
x→∞

2
√
x+ 3√
x+ 2

(g) lim
v→∞

√
2v + 1
v − 2

(h) lim
t→∞

√
t+ 1
t+ 3

(i) lim
x→∞

3x+ 1√
4x2 + 5

(j) lim
x→−∞

3x+ 1√
4x2 + 5

8. Let
f(x) =

2x
x− 4

.

Find lim
x→4−

f(x), lim
x→4+

f(x), lim
x→−∞

f(x), and lim
x→∞

f(x). Use this information to sketch

the graph of f .

9. Discuss lim
x→π

2
−

tan(x), lim
x→π

2
+

tan(x), and lim
x→π

2

tan(x).

10. Do lim
x→∞

sin(πx) and lim
n→∞

sin(πn) denote the same thing? Discuss.
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11. (a) Explain why

− 1
x
≤ sin(x)

x
≤ 1
x

for all x .

(b) Use part (a) to find lim
x→∞

sin(x)
x

.


