Lecture 7: Properties of Limits

7.1 Basic properties of limits

Proposition Suppose $\lim _{x \rightarrow a} f(x)=L$ and $\lim _{x \rightarrow a} g(x)=M$. Then

1. $\lim _{x \rightarrow a}(f(x)+g(x))=L+M$,
2. $\lim _{x \rightarrow a}(f(x)-g(x))=L-M$,
3. $\lim _{x \rightarrow a} c f(x)=c L$ for any constant c,
4. $\lim _{x \rightarrow a}(f(x) g(x))=L M$,
5. $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{L}{M}$ provided $M \neq 0$,
6. For any rational number $n, \lim _{x \rightarrow a}(f(x))^{n}=L^{n}$.

7.2 Two basic limits

1. For any constant c and number $a, \lim _{x \rightarrow a} c=c$.

To show this from the definition, given any $\epsilon>0$, we need to find $\delta>0$ such that $|c-c|<\epsilon$ whenever $0<|x-a|<\delta$. But $|c-c|=0$ no matter what the value of x is, so we may choose δ to be any positive number.
2. For any number $a, \lim _{x \rightarrow a} x=a$.

To show this from the definition, given any $\epsilon>0$, we need to find $\delta>0$ such that $|x-a|<\epsilon$ whenever $0<|x-a|<\delta$. Hence we need only let $\delta=\epsilon$.

7.3 Examples

Example $\quad \lim _{x \rightarrow 2} x^{2}=\left(\lim _{x \rightarrow 2} x\right)\left(\lim _{x \rightarrow 2} x\right)=(2)(2)=4$
Example More generally, $\lim _{x \rightarrow a} x^{2}=\left(\lim _{x \rightarrow a} x\right)\left(\lim _{x \rightarrow a} x\right)=(a)(a)=a^{2}$ for any number a.
Example $\quad \lim _{x \rightarrow 1} 4 x^{8}=4 \lim _{x \rightarrow 1} x^{8}=(4)(1)=4$

Example $\quad \lim _{x \rightarrow-1}\left(x^{2}-3 x+4\right)=\lim _{x \rightarrow-1} x^{2}-3 \lim _{x \rightarrow-1} x+\lim _{x \rightarrow-1} 4=1+3+4=8$
Theorem If f is a polynomial, then $\lim _{x \rightarrow a}=f(a)$ for any number a.
Example $\quad \lim _{x \rightarrow 2}\left(x^{3}-4 x+3\right)=8-8+3=3$
Example $\lim _{x \rightarrow 1} \frac{x^{2}+1}{3 x+4}=\frac{\lim _{x \rightarrow 1}\left(x^{2}+1\right)}{\lim _{x \rightarrow 1}(3 x+4)}=\frac{2}{7}$
Theorem If f is a rational function defined at a, then $\lim _{x \rightarrow a}=f(a)$.
Example $\quad \lim _{x \rightarrow 3} \frac{x^{2}-4}{x+1}=\frac{5}{4}$
Example $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}=\lim _{x \rightarrow 2} \frac{(x-2)(x+2)}{x-2}=\lim _{x \rightarrow 2}(x+2)=4$
Example $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{2}+x+1\right)}{x-1}=\lim _{x \rightarrow 1}\left(x^{2}+x+1\right)=3$
Example

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x} & =\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x} \cdot \frac{\sqrt{x+1}+1}{\sqrt{x+1}+1} \\
& =\lim _{x \rightarrow 1} \frac{x+1-1}{x(\sqrt{x+1}+1)} \\
& =\lim _{x \rightarrow 1} \frac{1}{\sqrt{x+1}+1}=\frac{1}{2}
\end{aligned}
$$

Example $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x+2}=\frac{0}{4}=0$
Example Since $\lim _{x \rightarrow 2^{+}} \frac{x+2}{x-2}=\infty$ and $\lim _{x \rightarrow 2^{-}} \frac{x+2}{x-2}=-\infty$, all we can say about $\lim _{x \rightarrow 2} \frac{x+2}{x-2}$ is that it does not exist.

Example Suppose

$$
f(x)= \begin{cases}x^{2}-1, & \text { if } x \leq 0 \\ x+4, & \text { if } x>0\end{cases}
$$

Then

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left(x^{2}-1\right)=-1
$$

and

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}}(x+4)=4
$$

Hence $\lim _{x \rightarrow 0} f(x)$ does not exist.
Example Suppose

$$
g(t)= \begin{cases}3 t+1, & \text { if } t \leq 1 \\ t^{2}+3, & \text { if } t>1\end{cases}
$$

Then

$$
\lim _{t \rightarrow 1^{-}} g(t)=\lim _{t \rightarrow 1^{-}}(3 t+1)=4
$$

and

$$
\lim _{t \rightarrow 1^{+}} g(t)=\lim _{t \rightarrow 1^{+}}\left(t^{2}+3\right)=4
$$

Hence $\lim _{t \rightarrow 1} g(t)=4$.
Example Let $f(x)=x \sin \left(\frac{1}{x}\right)$. We have seen that $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ does not exist. However, since

$$
-1 \leq \sin \left(\frac{1}{x}\right) \leq 1
$$

for any value of x, we have

$$
-x \leq x \sin \left(\frac{1}{x}\right) \leq x
$$

whenever $x>0$ and

$$
-x \geq x \sin \left(\frac{1}{x}\right) \geq x
$$

whenever $x<0$. Now both $\lim _{x \rightarrow 0} x=0$ and $\lim _{x \rightarrow 0}(-x)=0$, so we must have

$$
\lim _{x \rightarrow 0^{+}} x \sin \left(\frac{1}{x}\right)=0
$$

and

$$
\lim _{x \rightarrow 0^{-}} x \sin \left(\frac{1}{x}\right)=0
$$

Thus

$$
\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0 .
$$

This is an example of the squeeze theorem.

