
SECTION 2 — PARTIAL DERIVATIVES

Functions of two variables
Functions of one variable (y = f(x)) have one independent variable (the x) and one

dependent variable (the y). We can represent such functions simply on a graph. For
example

X

Y

y = f(x) The slope of the tangent at any
point is the derivative of the func-
tion.

Functions of two variables will have the form z = f(x, y). They have two independent
variables (x and y) and one dependent variable (z).

For example, the volume of a cone,

V =
1

3
πr2h,

depends on the height h and the radius of the base r. The volume V is the dependent
variable. We can vary r, keeping h fixed, or vary h keeping r fixed, or vary both. In each
case, V may (will) change.

X

Y

u

l

As a second example, consider a
vibrating string that is fixed at
x = 0 and x = l. Its displace-
ment u will depend on x and t.
For example

u(x, t) = sin
πx

l
cos

πct

l
.

To represent z = f(x, y) graphically, we need three dimensions. The function actually
represents a two dimensional surface in three dimensions. Consider the function z =
x2 + y2. At each point in the x–y plane, calculate z and plot the point (x, y, z).
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X

Y

Z

z

(x; y)

z = f(x; y) = x2 + y2

-

-

-

The points make up a surface
called a paraboloid. It is actu-
ally the parabola z = x2 rotated
about the z axis.

Another example is the function
z =

√
a2 − x2 − y2. This repre-

sents a hemisphere of radius a.

X

Y

Z

a

a

a

X

Y

Z

z = x y

-

-

-

z = xy represents a ‘saddle’

Finally, we have already seen that the function z = ax + by + c represents a plane.
Another way to represent these functions is to use ‘level curves’. For example, if

z = f(x, y) = x2 + y2, the level curves are z = constant or x2 + y2 = constant = a2.
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X

Y

This will be a family of circles.

If z = xy, the level curves are
xy = constant. i.e.

y =
constant

x
.

This will be a family of hyperbo-
lae.

X

Y

Families of level curves can be seen as contour maps of the surface.

Derivatives
The derivative is just the rate of change of the function as x and y change. But the

change in (x, y) can be in any direction.
For example, for the cone, V = 1

3
πr2h, what happens as h → h + δh? We have

V → V + δV =
1

3
πr2(h + δh)

so δV = 1
3
πr2δh. The rate of change is

δV

δh
=

1

3
πr2 so

lim
δh→0

δV

δh
=

1

3
πr2.

This is called
∂V

∂h
. This is the partial derivative with respect to h (keeping r constant).

The ∂ indicates that the other variable is kept constant.
On the other hand, if we change r,

V + δV =
1

3
π(r + δr)2h

so δV = 1
3
π(2rδr + (δr)2)h. The rate of change is

δV

δr
=

1

3
π(2r + δr)h and

∂V

∂r
= lim

δr→0

δV

δr
=

2

3
πrh.
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Note that we do each differentiation keeping the other variable fixed.
Definition of partial derivative.

If f(x, y) is a function of two variables,

∂f

∂x
(x0, y0) = lim

∆x→0

f(x0 + ∆x, y0) − f(x0, y0)

∆x
∂f

∂y
(x0, y0) = lim

∆y→0

f(x0, y0 + ∆y) − f(x0, y0)

∆y

X

Y

This gives the rate at which f is
changing as we move in the x or
y direction respectively.

If we think in terms of the surface, it tells if we will be moving uphill or downhill and
how fast.
Example 1. f(x, y) = 2x2 + 2x3y4 − 2xy.

.
.
. ∂f/∂x = 4x + 6x2y4 − 2y,

and ∂f/∂y = 8x3y3 − 2x.

Example 2 f(x, y) = ex sin(xy).
.
.
. ∂f/∂x = ex sin(xy) + exy cos(xy),

and ∂f/∂y = exx cos(xy).

Note that
∂f

∂x

∣∣∣∣
y

and
∂f

∂y

∣∣∣∣
x

is the notation used when it is not clear which variable is to be

held constant.

That is, to calculate
∂f

∂y

∣∣∣∣
x

, we first express f as a function of x and y, and not some

related variables.
We can calculate higher derivatives similarly.

∂2f

∂x2
, (differentiate twice with respect to x keeping y fixed.)

∂2f

∂x∂y
, (differentiate with respect to y then x.)

∂2f

∂y∂x
, (differentiate with respect to x then y.)

etc.
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For f(x, y) = 2x2 + 2x3y4 − 2xy,

∂f

∂x
= 4x + 6x2y4 − 2y,

∂f

∂y
= 8x3y3 − 2x

∂2f

∂x2
= 4 + 12xy4,

∂2f

∂x∂y
= 24x2y3 − 2

∂2f

∂y∂x
= 24x2y3 − 2,

∂2f

∂y2
= 24x3y2

Note that
∂2f

∂y∂x
=

∂2f

∂x∂y
. This is true for many functions.

Differentials
We already know how a function of two variables changes if we change the value of x or

y by a small amount. The rate of change is given by the corresponding partial derivative.
We can now get an idea of how the function changes if we change the values of both x and
y by small amounts. Thus, for a function, z = f(x, y), we want to find what happens to
z if we move from (x, y) to (x + ∆x, y + ∆y). The change in z will be given by

∆z = f(x + ∆x, y + ∆y) − f(x, y).

We can write this as

∆z =
[
f(x + ∆x, y + ∆y) − f(x + ∆x, y)

]
+

[
f(x + ∆x, y) − f(x, y)

]
.

The first term is the change due to the change in y and the second term is the change
due to the change in x. We can approximate these separately as

f(x + ∆x, y + ∆y) − f(x + ∆x, y) � fy∆y,
f(x + ∆x, y) − f(x, y) � fx∆x.

Therefore,
∆z � fx∆x + fy∆y.

(Note that we might expect that fy would need to be evaluated at the point
(x+∆x, y) rather than the point (x, y). However, the difference that would result is small
and, to the accuracy of the approximations we have made, we can evaluate both fx and
fy at (x, y).)

The formula for ∆z is called the increment formula and it is analogous to the situation

for functions of one variable where δy � dy

dx
δx. We simply have an extra term for the

independent variable. It is valid for any finite changes, ∆x and ∆y. If we consider changes
in x and y that are infinitesimally small we usually write these changes as dx and dy. The
corresponding change in z is

dz = fxdx + fydy.

dz is called the differential.
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Example
The area of a right-angled triangle with base x and angle θ is A = 1

2
x2 tan θ.

x

�

x tan �

What is the change in the area if
x changes from 1 to 0.95 and θ
changes from 45◦ to 50◦?

The increment formula is

∆A =
∂A

∂x
∆x +

∂A

∂θ
∆θ.

Now ∂A/∂x = x tan θ = 1 (if θ = 45◦) and ∂A/∂θ = 1
2
x2 sec2 θ = 1. Therefore,

∆A � ∂A

∂x
∆x +

∂A

∂θ
∆θ

= ∆x + ∆θ
= −0.05 + 5π/180
= 0.0372

If x changes from 1 to 0.95, what change in θ is needed to keep A the same?
In this case,

∆A = 0 =
∂A

∂x
∆x +

∂A

∂θ
∆θ

.
.
. 0 = −0.05 + ∆θ.

.
.
. ∆θ = 0.05 radians

= 2.86◦.

Directional derivatives
For functions of two variables, z = f(x, y), we know the derivative in the x direction

is fx and the derivative in the y direction is fy. What about other directions?

X

Y

�

Represent f(x, y) by its level curves
and consider the point (x0, y0). A
displacement, (∆x,∆y), from that
point will make an angle θ with the
x–axis.

The unit vector in that direction is

∼̂u = cos θ∼i + sin θ∼j
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where cos θ =
∆x

∆s
, sin θ =

∆y

∆s
and ∆s =

√
(∆x)2 + (∆y)2. If we move in the direction

of ∼̂u, the change in f is
∆f = ∆z � fx∆x + fy∆y.

The rate of change is
∆f

∆s
. The directional derivative is

df

ds
= lim

∆s→0

∆f

∆s

= lim
∆s→0

(
fx

∆x

∆s
+ fy

∆y

∆s

)

= fx cos θ + fy sin θ.

The directional derivative,
df

ds
, depends on the direction, θ (or ∼̂u), as well as the position

(x0, y0). This is the quantity that tells us if we are going uphill or downhill and how fast.

For displacements parallel to the x–axis, θ = 0 and the directional derivative is
df

ds
=

fx (the partial derivative). For displacements parallel to the y–axis, θ = π/2 and the

directional derivative is
df

ds
= fy

The directional derivative is sometimes written as D
∼̂u
f .

Example
Calculate D

∼̂u
f in the direction of ∼i + 2∼j for the function f(x, y) = 2x2 + 2x3y4 − 2xy

at the point (3, 1).
Now, fx = 4x + 6x2y4 − 2y = 64 at (3, 1) and fy = 8x3y3 − 2x = 210 at (3, 1).

∼̂u is in the direction ∼i + 2∼j so

∼̂u =
1√
5∼i +

2√
5∼j

.
.
. D

∼̂u
f = 64 × 1√

5
+ 210 × 2√

5
= 216.45.

The directional derivative can also be written in terms of vectors. For example,

D
∼̂u
f =

df

ds
= fx cos θ + fy sin θ = (fx∼i + fy∼j) · (ux∼i + uy∼j).

The vector on the right is just ∼̂u. The other vector is a new vector called grad f or ∼∇f .
Thus

D
∼̂u
f = ∼∇f · ∼̂u.

The symbol ∼∇ represents a vector differential operator which can be written as ∼i
∂

∂x
+∼j

∂

∂y
.

Note that ∼∇f contains information about the function and the position and ∼̂u gives the
direction in which we want the derivative.
Example
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Consider the function z = x2 + y2. For this function, the level curves are circles.

X

Y

u
~

Find the directional derivative at
(
√

3/2, 1/2) in the direction of

∼u = (1, 1).

First we calculate fx and fy.
∂f/∂x = 2x =

√
3.

∂f/∂y = 1.
so ∼∇f =

√
3∼i + ∼j. This tells us what the function looks like at the point. Also, ∼̂u =

(1/
√

2, 1/
√

2). Therefore

∼∇f · ∼̂u =
√

3/
√

2 + 1/
√

2 � 1.93.

This tells us how fast f is increasing in the direction of ∼̂u. Note that f is increasing in
this direction as the diagram suggests.

It also helps to draw the direction of ∼∇f on the diagram.

X

Y

u
~

r
~

f

If it is drawn carefully, it is per-
pendicular to the level curves.

We expect this since, if we move along the level curve, df/ds will be zero. Therefore, if
we chose ∼̂u to point along the level curve,

∼∇f · ∼̂u = 0.

i.e. a vector parallel to the level curve is perpendicular to ∼∇f .
Note that this gives us a quick way of finding the normal to any curve. If the curve

is defined by f(x, y) = const, then the normal to the curve is ∼∇f = fx∼i+ fy∼j. This helps
to give an understanding of the ‘meaning’ of ∼∇f .

The other thing we may want to know is the direction in which f increases the most
rapidly. Now df/ds = ∼∇f · ∼̂u = | ∼∇f | |∼̂u| cosφ where φ is the angle between ∼∇f and ∼̂u. So
df/ds = | ∼∇f | cosφ. This is a maximum if φ = 0. i.e. if ∼̂u ∝ ∼∇f .

Therefore, ∼∇f points in the direction of maximum increase. Note also that the maxi-
mum steepness is given by | ∼∇f |.
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Also note that ∼∇f is a vector function obtained from a scalar function. In many cases,
where a force field is obtained from a scalar potential, the relationship is ∼F = −∼∇V . Vector
functions that can be obtained from a scalar function in this way are very important.

Chain rules
For functions of one variable, if y = y(x), and x = x(t) then

dy

dt
=

dy

dx

dx

dt
.

Similarly, for functions of two variables, z = f(x, y), x and y might both depend on t. For
example, (x(t), y(t)) might be the coordinates of a moving particle, so ∼r = x(t)∼i + y(t)∼j.
f might be some potential that affects the motion of the particle. The potential ‘seen’ by
the particle is z = f(x(t), y(t)). In this case, z really depends on t only.

What is
dz

dt
? How rapidly is the potential changing for the particle?

In time δt, the change in f is δf � fxδx + fyδy. We want

lim
δt→0

δf

δt
= lim

δt→0

(
fx

δx

δt
+ fy

δy

δt

)

= fx
dx

dt
+ fy

dy

dt

=
∂f

∂x

dx

dt
+

∂f

∂y

dy

dt

Note this is the same as the chain rule for functions of one variable, except that we
have two terms instead of one. It can also be written as

df

dt
= ∼∇f · d∼r

dt
.

Example
A particle moves through a potential field V = 3x2y + ex on a path ∼r = t∼i + sin t∼j.

What is dV/dt when t = π?
Now ∼∇V = (6xy + ex)∼i + 3x2

∼j = (6t sin t + et)∼i + 3t2∼j.

Also, d∼r/dt = ∼i + cos t∼j. Therefore

dV

dt
= (6t sin t + et) + 3t2 cos t

= eπ − 3π2 at t = π.

Functions of Three Variables
What happens if we have a function of three variables? i.e. w = f(x, y, z). Most of the

formulae generalize quite easily. The main difficulty is in visualizing what is happening.
For example, consider

w = x2 + y2 + z2.

We can’t ‘plot’ this as a surface, as we would need four dimensions. So, we can’t visualize
it in this way.

We can try to look at the the ‘level curves’. i.e. f(x, y, z) = const or

x2 + y2 + z2 = constant.

Note that these are now level surfaces. In fact they are spheres with centre at the origin.
They need three dimensions rather than two dimensions.
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There will be three partial derivatives. The differential is now

dw = fxdx + fydy + fzdz.

The increment formula is
δw = fxδx + fyδy + fzδz.

The directional derivative is
D

∼̂u
f = ∼∇f · ∼̂u,

where ∼∇f = fx∼i + fy∼j + fz∼k and ∼̂u is a three dimensional unit vector in the direction we
are interested in.

There is also a chain rule. If V (t) = f(x(t), y(t), z(t)), then

dV

dt
=

∂f

∂x

dx

dt
+

∂f

∂y

dy

dt
+

∂f

∂z

dz

dt
= ∼∇f · d∼r

dt
.

As for functions of two variables, ∼∇f is perpendicular to the level curves, only in this
case they are level surfaces. This gives us a way to find the normal of a surface. Suppose
we have a surface z = g(x, y). If

f(x, y, z) = z − g(x, y)

then the equation f(x, y, z) = 0 will define the same surface. This is a level surface of f .
The normal to this surface is given by ∼∇f . i.e.

∼n ∝ ∼∇f

= −∂g

∂x∼i−
∂g

∂y∼j + ∼k.

This is the same as the formula we would get if we calculated the normal to the surface
z = g(x, y) using other methods. Once we know the normal to the surface, we can
calculate the equation of the tangent plane.

�(x0; y0; z0)
The tangent plane at (x0, y0, z0) will
be perpendicular to the normal to
the surface at that point.

Excercise
Show that the equation the tangent plane to the surface z = g(x, y) at the point

(x0, y0, z0) can be expressed as

−(x− x0)gx − (y − y0)gy + (z − z0) = 0

or
−gxx− gyy + z = (−gxx0 − gyy0 + z0) = const.


