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Section 8.2

Separation of Variables

In the previous section we discussed two methods for approximating the solution of a
differential equation

ẋ = f(x, t)

with initial condition x(t0) = x0. We will now consider, in this section as well as in
Sections 8.3 and 8.4, techniques for finding closed form solutions for such equations, that
is, solutions expressible in terms of the elementary functions of calculus. To do so will
require considering different classes of equations depending on the form of the function f .
As in ordinary integration, finding a closed form expression for the solution of a differential
equation is frequently a difficult, if not impossible, problem which requires us to exploit
whatever information we can gain from the form of the function. In this section we will
consider a class of equations known as separable equations and in Sections 8.3 and 8.4 we
will consider linear equations.

We call a differential equation
ẋ = f(x, t) (8.2.1)

with initial condition x(t0) = x0 separable, or say it has separable variables, if f(x, t) =
g(x)h(t) for some functions g and h, where g depends only on x and h depends only on t.
We will assume that g and h are both continuous and hence, in particular, integrable. In
that case, (8.2.1) becomes

ẋ = g(x)h(t) (8.2.2)

which implies that
ẋ

g(x)
= h(t) (8.2.3)

at all points for which g(x) 6= 0. Integrating (8.2.3) from t0 to t (assuming g(x(s)) 6= 0 for
all s between t0 and t), we have∫ t

t0

1
g(x(s))

ẋ(s)ds =
∫ t

t0

h(s)ds, (8.2.4)

where we have used s as the variable of integration so that our answer will be in terms of
t. Now the substitution

u = x(s)
du = ẋ(s)

gives us ∫ t

t0

1
g(s)

ẋ(s)ds =
∫ x(t)

x(t0)

1
g(u)

du =
∫ x

x0

1
g(u)

du (8.2.5)
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for the integral on the right-hand side. Hence, putting (8.2.4) and (8.2.5) together,∫ x

x0

1
g(u)

du =
∫ t

t0

h(s)ds. (8.2.6).

Thus we can solve an equation with separable variables provided we are able to evaluate
both of the integrals in (8.2.6) and then solve the resulting equation for x. The process
may break down at either of these final two steps, in which case we must fall back on
numerical approximations even though the equation is separable.

Separation of variables If g and h are continuous functions of x and t, respectively,
and x satisfies the differential equation

ẋ = g(x)h(t) (8.2.7)

with x(t0) = x0, then ∫ x

x0

1
g(u)

du =
∫ t

t0

h(s)ds, (8.2.8)

provided g(u) 6= 0 for all u between x0 and x.

Note that this is the same method we used to solve the inhibited growth model equation
in Section 6.3.

Example Consider the equation
ẋ = 0.4x

with x(0) = 100. This is a separable equation with, in the notation used above, g(x) = x
and h(t) = 0.4 . (Note that the choices for g and h are not unique.) Using (8.2.8), we have∫ x

100

1
u
du =

∫ t

0

0.4ds,

Now, assuming x > 0,∫ x

100

1
u
du = log(u)

∣∣∣x
100

= log(x)− log(1000) = log
( x

100

)
,

and ∫ t

0

0.4ds = 0.4s
∣∣∣t
0

= 0.4t.

Hence we have
log
( x

100

)
= 0.4t,

from which we obtain
x

100
= e0.4t
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and, finally,
x = 100e0.4t.

Note that this is the solution we should expect from our study of equations of this form
in Sections 6.1 and 6.3.

Example Consider the equation
ẏ = −2yt (8.2.9)

with y(0) = y0 6= 0. This is a separable equation with, in the notation used above, g(y) = y
and h(t) = −2t . Using (8.2.8), we have∫ y

y0

1
u
du = −

∫ t

0

2sds.

Now ∫ y

y0

1
u
du = log |u|

∣∣∣y
y0

= log |y| − log |y0| = log
∣∣∣ y
y0

∣∣∣
and

−
∫ t

0

2sds = −s2
∣∣∣t
0

= −t2.

Hence we have
log
∣∣∣ y
y0

∣∣∣ = −t2,

from which it follows that ∣∣∣ y
y0

∣∣∣ = e−t
2
.

Now e−t
2
> 0 for all t, so y(t) is never 0. Since y is continuous (which follows from our

assumption that it is differentiable), this means that either y(t) > 0 for all t or y(t) < 0
for all t. Since y(0) = y0, y(t) > 0 for all t if y0 > 0 and y(t) < 0 for all t if y0 < 0. In
either case,

y(t)
y0

> 0

for all t, so ∣∣∣ y
y0

∣∣∣ =
y

y0
.

Hence we have
y

y0
= e−t

2
,

or
y = y0e

−t2 . (8.2.10)

Note that (8.2.10) also specifies a solution of (8.2.9) when y0 = 0, namely, the solution
y(t) = 0 for all t. By leaving the value of y0 unspecified, we have found the general form of
all possible solutions for the equation. We call the family of all possible solutions given by
(8.2.10) the general solution of the equation (8.2.9). Any solution obtained by specifying
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Figure 8.2.1 Four particular solutions of ẏ = −2yt

a value of y0, say, for example, y0 = 10, is called a particular solution of the equation.
Figure 8.2.1 shows the graphs of four particular solutions for this equation.

As noted in the first example, the choices for g and h are not unique. For example, in
the second example we could just as well have taken g(y) = 2y and h(t) = t. However, one
should attempt to choose g and h in such a way that the subsequent steps in the solution
are as simple as possible.

Example Consider the equation

ẋ = − t
x

with x(0) = x0 6= 0. Separating the variables, we have∫ x

x0

udu = −
∫ t

0

sds.

Now ∫ x

x0

udu = u2
∣∣∣x
x0

= x2 − x2
0

and

−
∫ t

0

sds = −s2
∣∣∣t
0

= −t2,

and so
x2 − x2

0 = −t2,

or
x2 + t2 = x2

0.

This equation implicitly defines x as a function of t. Indeed, from this equation we can see
that the graph of x is part of circle of radius x0 centered at the origin. Solving explicitly
for x, we have

x =
√
x2

0 − t2
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if x0 > 0 and

x = −
√
x2

0 − t2

if x0 < 0. Note that x is only defined for −x0 < t < x0.

Example In Section 8.1 we considered the equation

v̇ = −g − k

m
v,

with v(0) = 0, as a model for the velocity of an object in free fall near the surface of the
earth when the force due to air resistance is proportional to velocity. Here v is the velocity
of the object, g, as usual, is 32 feet per second per second or 9.8 meters per second per
second, m is the mass of the object, and k > 0 is a constant which depends on the air
resistance of the particular object. If we write this equation in the form

v̇ = −g
(

1 +
k

gm
v
)

(8.2.11)

and separate variables, using

f(v) = 1 +
k

gm
v

and
h(t) = −g,

then we have ∫ v

0

1
1 + k

gmv
du = −

∫ t

0

gds.

Now ∫ v

0

1
1 + k

gmv
du =

gm

k
log
∣∣∣1 +

k

gm
u
∣∣∣∣∣∣v

0
=
gm

k
log
∣∣∣1 +

k

gm
v
∣∣∣

and

−
∫ t

0

gds = −gs
∣∣∣t
0

= −gt,

so
gm

k
log
∣∣∣1 +

k

gm
v
∣∣∣ = −gt.

Hence
log
∣∣∣1 +

k

gm
v
∣∣∣ = −kt

m
,

from which it follows that ∣∣∣1 +
k

gm
v
∣∣∣ = e−

kt
m .

Thus either
1 +

k

gm
v = e−

kt
m
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Figure 8.2.2 Graph of v(t) = −320(1− e−0.1t)

or
1 +

k

gm
v = −e− ktm .

That is, either
v = −gm

k
(1− e− ktm ).

or
v =

gm

k
(1− e− ktm ).

Since the object is following toward the earth, v < 0 and we must have

v = −gm
k

(1− e− ktm ).

Hence we now have a closed form solution for this model of free fall, whereas in the previous
section we could only compute a numerical approximation. Notice that one advantage of
the closed form solution is that we did not have to specify values for the parameters k and
m before finding the solution; as a result, we may now easily compute v for any specified
values of k and m. For example, using k

m = 0.1 and g = 32 as in our example in Section
8.1, we obtain a plot of v as shown in Figure 8.2.2. You should compare this with the
graph of our numerical solution in Figure 8.1.3. Also, the closed form solution allows us
to compute

lim
t→∞

v(t) = lim
t→∞

−gm
k

(1− e− ktm ) = −gm
k
, (8.2.12)

showing that an object falling according to this model has a terminal velocity, as we
suspected from our numerical work in Section 8.1. Moreover, (8.2.12) gives us a general
expression for this velocity. For our example, k

m = 0.1 and g = 32 give us a terminal
velocity of

−gm
k

= −320 feet per second.
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Problems

1. Solve each of the following differential equations using the given initial condition.

(a) ẋ = −0.9x, x(0) = 75 (b) ẋ = x2, x(0) = 10

(c) ẏ =
t

y
, y(0) = 5 (d) ẇ =

w

t
, w(1) = 1

(e) ẋ =
t

x+ tx
, x(0) = 4 (f) ẏ = 1 + y2, y(0) = 0

(g) ẋ = x(1− x), x(0) = 0.2

2. (a) Solve the differential equation ẋ = −x2t, x(0) = x0 6= 0.
(b) Graph x on the interval [5, 5] for x0 = 2, x0 = 5, and x0 = 10. Are the graphs

similar?
(c) What is the domain of x if x0 > 0? What is the domain of x if x0 < 0?
(d) Graph x for x0 = −1 and x0 = 1. Are the graphs similar?

3. (a) A curve is defined so that whenever (x0, y0), with y0 6= 0, is a point on the curve,

dy

dx

∣∣∣
(x,y)=(x0,y0)

= −ax0

by0
,

where a > 0 and b > 0 are constants. Show that the curve must be an ellipse.
Under what conditions is the curve a circle?

(b) A curve is defined so that whenever (x0, y0), with y0 6= 0, is a point on the curve,

dy

dx

∣∣∣
(x,y)=(x0,y0)

=
ax0

by0
,

where a > 0 and b > 0 are constants. Show that the curve must be a hyperbola.

4. In Chapter 6 we considered the consequences of the population growth model

ẋ = kx,

with x(0) = x0 , where x(t) represents the size of some population at time t and k > 0
is a constant which depends on the rate at which the population is growing. In this
problem we will see what happens if ẋ is proportional, not to x, but to some power of
x. That is, consider the model

ẋ = kxb, (8.2.13)

with x(0) = x0 and b > 0 a constant.

(a) Solve (8.2.13) when b = 2 and show that

lim
t→ 1

kx0
−
x(t) =∞.

Plot x for x0 = 50 and k = 0.001, k = 0.01, and k = 0.02.
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(b) Solve (8.2.13) when b > 1. Find c such that

lim
t→c−

x(t) =∞.

Plot x for x0 = 50, k = 0.01, and b = 1.5, b = 1.2, and b = 1.01.
(c) Solve (8.2.13) when b = 0.5. Show that x is a quadratic polynomial and

lim
t→∞

x(t) =∞.

Plot x for x0 = 50 and k = 0.01, k = 0.02, and k = 0.05.
(d) Solve (8.2.13) when 0 < b < 1 and show that

lim
t→∞

x(t) =∞.

Plot x for x0 = 50, k = 0.01, and b = 0.2, b = 0.4, and b = 0.9.
(e) Compare the rates of growth for 0 < b < 1, b = 1, and b > 1. Which model leads to

the slowest population growth? Which model leads to the most rapid population
growth? Why is the case b > 1 sometimes referred to as the doomsday model?

5. Suppose the force due to air resistance acting on a falling body of mass m is propor-
tional to the square of the velocity v.
(a) Explain why v satisfies the differential equation

v̇ = −g +
k

m
v2,

where k > 0 is a constant.
(b) Assuming v(0) = 0, solve the equation in (a) for v.

(c) Show that the terminal velocity of the object is −
√
mg

k
.

(d) Plot v over the interval [0, 20] using g = 32 and k
m = 0.01. Compare this plot with

the plot of the numerical solution found in Problem 8 of Section 8.1.

6. In Section 1.4 we discussed the discrete time version of Newton’s law of cooling. Briefly,
this law says if an object with an initial temperature of T0 is placed in an environment
which is held at a constant temperature S, then the rate of change of the temperature T
of the object is proportional to the difference between T and S. In terms of differential
equations, this says that T must satisfy the equation

Ṫ = k(T − S)

for some constant k.
(a) Show that

T = S + (T0 − S)ekt



Section 8.2 Separation of Variables 9

and verify that
lim
t→∞

T (t) = S.

(b) A cup of coffee, initially at a temperature of 115◦F, is placed on a table in a room
held at a constant temperature of 72◦F. If after five minutes the coffee has cooled
to 105◦F, what is the temperature of the coffee after 20 minutes? How long will it
take the coffee to cool to 80◦F? Graph T.

(c) A glass of lemonade, initially at a temperature of 40◦F, is placed on a table in a
room held at a constant temperature of 75◦F. If after 10 minutes the lemonade has
warmed to 48◦F, what is the temperature of the lemonade after 30 minutes? How
long will it take the lemonade to warm to 65◦F? Graph T.

(d) A cup of coffee, initially at a temperature of 110◦F, is placed on a table in a room.
After five minutes the coffee has cooled to 100◦F and after ten minutes the coffee
has cooled to 92◦F. What is the temperature of the room?


