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Section 5.6

Infinite Series:
Absolute Convergence

At this point we have limited our study of series primarily to those series having nonnega-
tive terms, the only exceptions being some geometric series and series which are multiples
of series with nonnegative terms. In this section we shall consider the more general question
of series with negative as well as positive terms.

An important consideration when looking at the behavior of an arbitrary series

∞∑
n=1

an (5.6.1)

is the behavior of the related series
∞∑
n=1

|an|. (5.6.2)

Of course, if all the terms of (5.6.1) are nonnegative, then (5.6.1) and (5.6.2) are the same
series. In any case, (5.6.2) has all nonnegative terms, so we may use our results of the
last three sections to help determine whether or not it converges. Suppose that, by one
method or another, we have shown that (5.6.2) converges. Then, since

0 ≤ an + |an| ≤ 2|an| (5.6.3)

for any n, we know, by the comparison test, that the series

∞∑
n=1

(an + |an|) (5.6.4)

converges. Hence
∞∑
n=1

an =
∞∑
n=1

(an + |an|)−
∞∑
n=1

|an| (5.6.5)

converges since it is the difference of two convergent series. That is, the convergence of
(5.6.2) implies the convergence of (5.6.1).

Proposition If
∑∞
n=1 |an| converges, then

∑∞
n=1 an converges.

Definition The series
∑∞
n=1 an is said to converge absolutely if the series

∑∞
n=1 |an|

converges.
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With this terminology, the previous proposition says that any series which converges
absolutely also converges. We shall see later that the converse of this statement does not
hold; namely, there are series which converge, but do not converge absolutely.

Example The series

∞∑
n=1

(−1)n

n2
= −1 +

1
4
− 1

9
+

1
16
− 1

25
+ · · ·

converges absolutely since the series

∞∑
n=1

∣∣∣∣ (−1)n

n2

∣∣∣∣ =
∞∑
n=1

1
n2

converges. In particular, it follows that

∞∑
n=1

(−1)n

n2

converges.

Example The series

∞∑
n=1

(−1)n+1

n
= 1− 1

2
+

1
3
− 1

4
+

1
5
− 1

6
+ · · · ,

known as the alternating harmonic series, is not absolutely convergent since

∞∑
n=1

∣∣∣∣ (−1)n+1

n

∣∣∣∣ =
∞∑
n=1

1
n

is the harmonic series, which diverges. Hence the previous proposition does not provide any
information on the behavior of the alternating harmonic series itself. We shall see below
that in fact the alternating harmonic series converges even though it is not absolutely
convergent.

In general, determining whether a series which is not absolutely convergent is conver-
gent or divergent is a difficult problem. However, there is one particular type of series for
which we have, under certain conditions, a simple test. These series are the alternating
series, the series which, like those in the previous examples, alternate in sign from one
term to the next.

Definition A series in which the terms are alternately positive and negative is called an
alternating series.

Now suppose
∑∞
n=1 an is an alternating series which satisfies the following two condi-

tions:
(1) |an+1| ≤ |an| for n = 1, 2, 3, . . . ,
(2) lim

n→∞
|an| = 0.
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For the sake of the discussion we will assume that a1 > 0, although that will not affect our
conclusion. If sn is the nth partial sum of this series, then

s1 = a1, (5.6.6)

and, since a2 < 0,
s2 = a1 + a2 = s1 + a2 < s1. (5.6.7)

Next, since a3 > 0,
s3 = a1 + a2 + a3 = s2 + a3 > s2. (5.6.8)

Moreover, condition (1) implies a2 + a3 ≤ 0, from which it follows that

s3 = a1 + a2 + a3 = s1 + a2 + a3 ≤ s1. (5.6.9)

Thus we have s2 ≤ s3 ≤ s1. Next,

s4 = s3 + a4 < s3 (5.6.10)

since a4 < 0 and
s4 = s2 + a3 + s4 ≥ s2 (5.6.11)

since a3 + a4 ≥ 0. Thus s2 ≤ s4 ≤ s3 ≤ s1. For the next step,

s5 = s4 + a5 > s4 (5.6.12)

since a5 > 0 and
s5 = s3 + a4 + a5 ≤ s3 (5.6.13)

since a4 + a5 ≤ 0. Thus s2 ≤ s4 ≤ s5 ≤ s3 ≤ s1. Continuing in this way, we see that

s2 ≤ s4 ≤ s6 ≤ s5 ≤ s3 ≤ s1 (5.6.14)

and
s2 ≤ s4 ≤ s6 ≤ s7 ≤ s5 ≤ s3 ≤ s1. (5.6.15)

In general, for any positive integer n,

s2 ≤ s4 ≤ · · · ≤ s2n ≤ · · · ≤ s2n−1 ≤ · · · ≤ s5 ≤ s3 ≤ s1. (5.6.16)

That is, for n = 1, 2, 3, . . ., {s2n} is a bounded increasing sequence and {s2n−1} is a
bounded decreasing sequence. Thus both sequences have limits, say

lim
n→∞

s2n = L (5.6.17)

and
lim
n→∞

s2n−1 = M. (5.6.18)
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But then

L−M = lim
n→∞

s2n − lim
n→∞

s2n−1 = lim
n→∞

(s2n − s2n−1) = lim
n→∞

a2n = 0,

where the final equality follows from condition (2). Hence L = M , so

lim
n→∞

sn = L. (5.6.19)

In other words,
∑∞
n=1 an converges. This conclusion, known as Leibniz’s theorem, gives a

simple criterion for determining the convergence of some alternating series.

Leibniz’s theorem Suppose
∑∞
n=1 an is an alternating series for which |an+1| ≤ |an|

for n = 1, 2, 3, . . .. If
lim
n→∞

|an| = 0, (5.6.20)

then
∑∞
n=1 an converges.

Example The alternating harmonic series

∞∑
n=1

(−1)n+1

n

satisfies the conditions of Leibniz’s theorem: If we let

an =
(−1)n+1

n
,

n = 1, 2, 3, . . ., then

|an+1| =
1

n+ 1
<

1
n

= |an|

and
lim
n→∞

|an| = lim
n→∞

1
n

= 0.

Thus, as we claimed earlier, the alternating harmonic series converges.

Definition A series which converges but does not converge absolutely is said to converge
conditionally.

The previous example shows that the alternating harmonic series is an example of a
series which converges conditionally.

From the discussion prior to Leibniz’s theorem, we see that if
∑∞
n=1 an satisfies the

conditions of Leibniz’s theorem, a1 > 0, sn is its nth partial sum, and

s =
∞∑
n=1

an, (5.6.21)
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then we must have

s2 ≤ s4 ≤ · · · ≤ s6 ≤ · · · ≤ s ≤ · · · ≤ s5 ≤ s3 ≤ s1. (5.6.22)

Note that for any positive integer n we have sn+1 ≤ s ≤ sn if n is odd and sn ≤ s ≤ sn+1

if n is even. Thus, in either case,

|s− sn| ≤ |sn+1 − sn| = |an+1|, (5.6.23)

a result which also holds if a1 < 0

Proposition Suppose
∑∞
n=1 an is a convergent alternating series for which |an+1| ≤ |an|

for n = 1, 2, 3, . . .. If

s =
∞∑
n=1

an (5.6.24)

and

sn =
n∑
j=1

aj , (5.6.25)

then, for any n = 1, 2, 3, . . .,
|s− sn| ≤ |an+1|. (5.6.26)

Hence for those alternating series which satisfy the conditions of the proposition, the
error committed in approximating the sum of the series by a particular partial sum is no
greater in absolute value than the absolute value of the next term in the series.

Example For the alternating harmonic series, if

s =
∞∑
n=1

(−1)n+1

n

and

sn = 1− 1
2

+
1
3
− 1

4
+ · · ·+ (−1)n+1

n
=
∞∑
j=1

(−1)j+1

j
,

then
|s− sn| ≤

1
n+ 1

for n = 1, 2, 3, . . .. For example

s100 = 1− 1
2

+
1
3
− 1

4
+ · · ·+ 1

99
− 1

100
= 0.688172,

so
|s− s100| ≤

1
101

= 0.009901,
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where both results have been rounded to 6 decimal places. In other words, the sum of the
alternating harmonic series differs from 0.688172 by less than 0.009901. In fact, since the
next term in the series is positive, we know that s must lie between 0.688172 and

0.688172 + 0.009901 = 0.698073.

We will see in Section 6.2 that the sum of the alternating harmonic series is exactly the
natural logarithm of 2, which, to 6 decimal places, is 0.693147

Problems

1. For each of the following infinite series, answer the questions: Does the series converge
absolutely? Does the series converge conditionally? Does the series converge?

(a)
∞∑
n=1

(−1)n−1

n3
(b)

∞∑
n=1

(−1)n√
n

(c)
∞∑
n=1

3n2 − 1
4n2 + 2

(d)
∞∑
n=0

(−3)n

n!

(e)
∞∑
n=1

(−1)n+1

√
n+ 3

(f)
∞∑
n=3

(−1)nπn

(g)
∞∑
n=0

(−1)nn!
2n

(h)
∞∑
n=1

(
−2

3

)n−1

2. For each of the following infinite series, answer the questions: Does the series converge
absolutely? Does the series converge conditionally? Does the series converge?

(a)
∞∑
n=1

(−1)n+1(n2 + 1)
3n5 − 2

(b)
∞∑
n=0

− 3
5n

(c)
∞∑
n=0

32n

(2n)!
(d)

∞∑
n=0

(−1)n22n+1

(2n+ 1)!

(e)
∞∑
n=0

(−1)nπ2n

(2n)!
(f)

∞∑
n=14

(−2)n√
n+ 1

(g)
∞∑
n=1

(−1)n(n+ 1)
2n− 1

(h)
∞∑
n=2

1− n
2n2

3. (a) Approximate

s =
∞∑
n=0

(−1)n

n!

using

s15 =
15∑
n=0

(−1)n

n!
.
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(b) Find an upper bound for the error in approximating s by s15.
(c) Find the smallest n such that the absolute value of the error in approximating s

by

sn =
n∑
j=0

(−1)j

j!

is less than 0.000001. What is this approximation?

4. (a) Approximate

s =
∞∑
n=1

(−1)n+1

n2n

by

s50 =
50∑
n=1

(−1)n+1

n2n
.

(b) Find an upper bound for the absolute value of the error in approximating s by s50.
(c) Find the smallest n such that the absolute value of the error in approximating s

by

sn =
n∑
j=1

(−1)j+1

j2j

is less than 0.0001. What is this approximation?

5. In our development of Leibniz’s theorem, we assumed that a1 > 0. Discuss the changes
which must be made in the discussion if a1 < 0.


