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Section 5.2

Taylor’s Theorem

The goal of this section is to prove that if Pn is the nth order Taylor polynomial for a
function f at a point c, then, under suitable conditions, the remainder function

Rn(h) = f(c+ h)− T (c+ h) (5.2.1)

is O(hn+1). This result is a consequence of Taylor’s theorem, which we now state and
prove.

Taylor’s Theorem Suppose f is continuous on the closed interval [a, b] and has n+ 1
continuous derivatives on the open interval (a, b). If x and c are points in (a, b), then

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + · · ·+ f (n)(c)

n!
(x− c)n + rn(x), (5.2.2)

where

rn(x) =
∫ x

c

(x− t)n

n!
f (n+1)(t)dt. (5.2.3)

That is, if Pn is the nth order Taylor polynomial for f at some point c in (a, b) and x is
any point in (a, b), then

f(x) = Pn(x) + rn(x), (5.2.4)

where rn is given by (5.2.3).

We will show that Taylor’s theorem follows from the Fundamental Theorem of Integral
Calculus combined with repeated applications of integration by parts. Let f be a func-
tion satisfying the conditions of the theorem. Since f is an antiderivative of f ′, by the
Fundamental Theorem of Integral Calculus we have

f(x)− f(c) =
∫ x

c

f ′(t)dt. (5.2.5)

Hence
f(x) = f(c) +

∫ x

c

f ′(t)dt, (5.2.6)

which is the statement of Taylor’s theorem when n = 0. For n = 1, we perform an
integration by parts on the integral in (5.2.6) using

u = f ′(t) dv = dt
du = f ′′(t) v = −(x− t).
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Note that this is not the most obvious choice for v (certainly, v = t would be a simpler
choice), but it is a valid choice and one that leads to the result we desire. Namely, this
gives us

f(x) = f(c)− f ′(t)(x− t)
∣∣∣x
c

+
∫ x

c

(x− t)f ′′(t)dt

= f(c) + f ′(c)(x− c) +
∫ x

c

(x− t)f ′′(t)dt,

which is the statement of Taylor’s theorem for the case n = 1. For n = 2, we perform
another integration by parts using

u = f ′′(t) dv = (x− t)dt

du = f ′′′(t) v = − (x− t)2

2
,

from which we obtain

f(x) = f(c) + f ′(c)(x− c)− f ′′(t)(x− t)2

2

∣∣∣∣x
c

+
∫ x

c

(x− t)2

2
f ′′′(t)dt

= f(c) + f ′(c)(x− c) +
f ′′(c)

2
(x− c)2 +

∫ x

c

(x− t)2

2
f ′′′(t)dt.

Similarly, we obtain Taylor’s theorem for n = 3 by another integration by parts. This time
we have

u = f ′′′(t) dv =
(x− t)2

2
dt

du = f (4)(t) v = − (x− t)3

3!
,

which yields

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2
(x− c)2 − f ′′′(t)(x− t)3

3!

∣∣∣∣x
c

+
∫ x

c

(x− t)3

3!
f (4)(t)dt

= f(c) + f ′(c)(x− c) +
f ′′(c)

2
(x− c)2 +

f ′′′(c)
3!

(x− c)3 +
∫ x

c

(x− t)3

3!
f (4)(t)dt.

From this we can see that, for any nonnegative integer n, performing integration by parts
n times will yield

f(x) = f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 +

f ′′′(c)
3!

(x− c)3 + · · ·

+
f (n)(c)
n!

(x− c)n +
∫ x

c

(x− t)n

n!
f (n)(t)dt,

(5.2.7)

which is the general statement of Taylor’s theorem.
In applying Taylor’s theorem, it is seldom the case that the remainder term rn(x) can

be evaluated exactly. In most cases, we try to find an upper bound for |rn(x)| so that
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we know what is the worst possible error that we could commit in approximating f(x)
by Pn(x). For these purposes, there is an alternative formulation of the remainder term
which is often more useful than the one given in Taylor’s theorem.

Lagrange’s form of the remainder term Using the same notation as in the statement
of Taylor’s theorem, there exists a number k between c and x such that

rn(x) =
f (n+1)(k)(x− c)n+1

(n+ 1)!
. (5.2.8)

To show this, we will assume x > c, the argument in the case x < c being similar. So
let u be the point where f (n+1) attains its maximum value on [c, x] and let v be the point
where f (n+1) attains its minimum value on [c, x]. Note that we know such points exist
because we have assumed f (n+1) to be a continuous function on (a, b), and hence on [c, x].
Then we have

(x− t)n

n!
f (n+1)(v) ≤ (x− t)n

n!
f (n+1)(t) ≤ (x− t)n

n!
f (n+1)(u) (5.2.9)

for all t in [c, x]. Integrating each of the terms in (5.2.9) from c to x, we have

f (n+1)(v)
∫ x

c

(x− t)n

n!
dt ≤

∫ x

c

(x− t)n

n!
f (n+1)(t)dt ≤ f (n+1)(u)

∫ x

c

(x− t)n

n!
dt. (5.2.10)

Now ∫ x

c

(x− t)n

n!
dt =

(x− t)n+1

(n+ 1)!

∣∣∣∣x
c

=
(x− c)n+1

(n+ 1)!
(5.2.11)

and ∫ x

c

(x− t)n

n!
f (n+1)(t)dt = rn(x), (5.2.12)

so (5.2.10) implies that

f (n+1)(v)(x− c)n+1

(n+ 1)!
≤ rn(x) ≤ f (n+1)(u)(x− c)n+1

(n+ 1)!
. (5.2.13)

Finally, since

g(t) =
f (n+1)(t)(x− c)n+1

(n+ 1)!
(5.2.14)

is a continuous function of t on the interval [c, x], it follows from (5.2.13) and the Inter-
mediate Value Theorem that there exists a number k in [c, x] such that g(k) = rn(x), that
is,

rn(x) =
f (n+1)(k)(x− c)n+1

(n+ 1)!
, (5.2.15)

which is (5.2.8).
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Of course, we cannot calculate rn(x) exactly without knowing the value of k. However,
if we can find a number M such that

|f (n+1)(t)| ≤M (5.2.16)

for all t between c and x, then (5.2.8) implies that

|rn(x)| ≤ M

(n+ 1)!
|x− c|n+1. (5.2.17)

Hence, although usually we cannot hope to know the exact amount of error in our approx-
imation, in this case we can at least find an upper bound for the size of the error.

We can now show that rn(x) is O((x− c)n+1), or, equivalently, that

Rn(h) = f(c+ h)− Pn(c+ h) (5.2.18)

is O(hn+1). First choose ε > 0 so that the interval I = [c − ε, c + ε] is contained in the
interval (a, b), and let M be the maximum value of |f (n+1)| on I. Then, using (5.2.17), we
have

|rn(x)| ≤ M

(n+ 1)!
|x− c|n+1 (5.2.19)

for all x in I. Thus if |h| ≤ ε,

|Rn(h)| ≤ M

(n+ 1)!
|h|n+1, (5.2.20)

from which it follows that ∣∣∣∣Rn(h)
hn+1

∣∣∣∣ ≤ M

(n+ 1)!
. (5.2.21)

That is, Rn(h) is O(hn+1).

Proposition If f satisfies the conditions of Taylor’s theorem and Pn is the nth order
Taylor polynomial for f at c, then

Rn(h) = f(c+ h)− Pn(h) (5.2.22)

is O(hn+1).

Of course, from our previous work we know that this statement implies that Rn(h) is
also o(hn).
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With this proposition we may write

f(c+ h) = f(c) + f ′(c)h+
f ′′(c)

2!
h2 + · · ·+ f (n)(c)

n!
hn +O(hn+1), (5.2.23)

or, in terms of x = c+ h,

f(x) = f(c)+f ′(c)(x−c)+
f ′′(c)

2!
(x−c)2 + · · ·+ f (n)(c)

n!
(x−c)n+O((x−c)n+1), (5.2.24)

as long as f is n+ 1 times continuously differentiable on an open interval containing c.

Example Recall that the fifth order Taylor polynomial for sin(x) at 0 is

P5(x) = x− x3

3!
+
x5

5!
.

Since in this case P5 = P6, we now know that

sin(x) = x− x3

3!
+
x5

5!
+O(x7).

More explicitly, since
d7

dx7
sin(x) = − cos(x),

we have ∣∣∣∣ d7

dx7
sin(x)

∣∣∣∣ ≤ 1

for any value of x. Hence if
r5(x) = sin(x)− P5(x),

then by (5.2.17) it follows that

|r5(x)| ≤ |x|
7

7!
for any value of x. For example,

| sin(1)− P5(1)| ≤ 1
7!

=
1

5040
= 0.000198,

to 6 decimal places. That is, the error in approximating sin(1) by P5(1) is no more than
0.000198. In this case the error bound is very close to the actual error, for, to six decimal
place accuracy,

sin(1) = 0.841471

and
P5(1) = 1− 1

6
+

1
120

= 0.841667,

which gives an error of
sin(1)− P5(1)| = 0.000196.
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Note that, in general, for any nonnegative integer n,∣∣∣∣ d2n+3

dx2n+3
sin(x)

∣∣∣∣ = | cos(x)|.

Thus ∣∣∣∣ d2n+3

dx2n+3
sin(x)

∣∣∣∣ ≤ 1

for any value of x. Hence, using the fact that in this case P2n+1 = P2n+2,

| sin(x)− P2n+1(x)| ≤ |x|2n+3

(2n+ 3)!
(5.2.25)

for any value of x. With this inequality we can determine the order necessary for a Taylor
polynomial to give some desired level of accuracy for a particular approximation. For
example, if we wish to estimate sin(1.4) with an error of less than 0.001 using a Taylor
polynomial about 0, then (5.2.25) says we need only find a nonnegative integer n such that

1.42n+3

(2n+ 3)!
< 0.001,

in which case P2n+1(1.4) will provide the desired approximation. For n = 0, 1, 2, and 3,
we have the following table:

n
1.42n+3

(2n+ 3)!

0 0.4573333
1 0.0448187
2 0.0020915
3 0.0000569

Hence the smallest value of n that will work is n = 3; thus to attain the desired level of
accuracy we would use

P7(x) = x− x3

3!
+
x5

5!
− x7

7!
.

Checking this to 7 decimal places, we find that

P7(1.4) = 0.9853938

and
sin(1.4) = 0.9854497

an error of only 0.0000559.

Example Combining our work from Section 5.1 about the Taylor polynomial of order 4
for f(x) =

√
x at 1 with our new results, we now have

√
x = 1 +

1
2

(x− 1)− 1
8

(x− 1)2 +
1
16

(x− 1)3 − 5
128

(x− 1)4 +O((x− 1)5).
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If, for example, we wanted to bound the error involved in using P4(1.6) as an estimate for√
1.6, we would first note that

f (5)(x) =
105

32x
9
2
,

which is a decreasing function and hence is maximized on the interval [1, 1.6] at x = 1.
Thus

|f (5)(x)| ≤ 105
32

for all x in [1, 1.6]. From (5.2.16) it follows that

|
√

1.6− P4(1.6)| ≤
105
32

5!
|1.6− 1|5 = 0.0021263,

to 7 decimal places. Checking this on a calculator to 7 decimal places, we have

√
1.6 = 1.2649111

and
P4(1.6) = 1.2634375,

showing that the error in this case is 0.0014736.

If f is indefinitely differentiable on an interval about a point c and Pn is the Taylor
polynomial of order n for f at c, then it is frequently the case that P1, P2, P3, . . . is a
sequence of increasingly accurate approximating polynomials for f on some interval I
containing the point c. Of course, unless f is itself a polynomial, there is no polynomial
Pn in this sequence such that f(x) = Pn(x) for all x in I. Nevertheless, there are many
functions for which

f(x) = lim
n→∞

Pn(x) (5.2.26)

for all x in some interval I. Such functions are said to be analytic. Since a polynomial is
just the sum of a finite number of monomials, lim

n→∞
Pn(x) may be regarded as an infinite

sum of monomials, an infinite polynomial. That is, if f is an analytic function, then

f(x) = lim
n→∞

Pn(x)

= f(c) + f ′(c)(x− c) +
f ′′(c)

2!
(x− c)2 + · · ·+ f (n)(c)

n!
(x− c)n + · · ·

=
∞∑
n=0

f (n)(c)
n!

(x− c)n.

(5.2.27)

for all x in some interval I containing c. An infinite series of this type is called a power
series. Since power series have many of the nice properties of polynomials, such as being
easy to integrate, a representation of a function f by a power series in this manner can be
extremely useful. Although we considered infinite series in Section 1.3, we will need a far
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more thorough discussion of them before we will be able fully to understand a series like
(5.2.27). We will do this in Sections 5.3 through 5.6.

Problems

1. For each of the following functions f , find the Taylor polynomial of order 5 at the point
c, use it to approximate f(a), and find an upper bound for the absolute value of the
error in the approximation.

(a) f(x) = sin(x), c = 0, a = 0.8 (b) f(x) = cos(x), c = 0, a = 1.2
(c) f(x) = sin(2x), c = 0, a = −0.5 (d) f(x) =

√
x, c = 1, a = 1.5

(e) f(x) =
√
x, c = 9, a = 10 (f) f(x) = x

3
2 , c = 1, a = 1.4

(g) f(x) =
1
x

, c = 1, a = 0.8 (h) f(x) = sin(x), c = 0, a = −1.2

2. Use a Taylor polynomial to approximate sin(0.6) with an error of less than 0.0001.

3. Use a Taylor polynomial to approximate sin(−1.3) with an error of less than 0.00001.

4. Use a Taylor polynomial to approximate cos(1.2) with an error of less than 0.0001.

5. Find the Taylor polynomial of smallest order that will approximate sin(x) with an
error of less than 0.0005 for all x in [−2, 2].

6. Suppose L is a function defined on (0,∞) with L(1) = 0 and

L′(x) =
1
x
.

(a) Find P10, the Taylor polynomial of order 10 for L at 1.
(b) Use P10 to approximate L(1.5). Find an upper bound for the absolute value of the

error of this approximation.
(c) Find the Taylor polynomial of smallest degree that will approximate L(x) with an

error less than 0.0005 for all x in [1, 1.5].

7. Suppose E is a function defined on (−∞,∞) with E(0) = 1 and E′(x) = E(x) for all
x.

(a) Find P10, the Taylor polynomial of order 10 for E at 0.
(b) Use P10 to approximate E(1).
(c) Given that |E(x)| < 3x for all x > 0, find an upper bound for the absolute value

of the error in the approximation in part (b).
(d) Find the Taylor polynomial of smallest degree that will approximate E(x) with an

error less than 0.0001 for all x in [0, 2].

8. Let P9 be the 9th order Taylor polynomial for f(x) = sin(x) at 0. Use P9 to approxi-
mate ∫ 3

0

sin(x)
x

dx.
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9. (a) Find the 6th order Taylor polynomial for f(x) = sin(x2). How is it related to the
3rd order Taylor polynomial for g(x) = sin(x)?

(b) Find the 7th order Taylor polynomial for

h(x) =
∫ x

0

sin(t2)dt.

How is it related to your answer in (a)?


