Proof by Cases

When writing a proof by cases, be sure to do the following:

- Verify that your set of cases is complete that it accounts for all possibilities.
- Clearly identify your cases.
- Address each case separately. Do not address them in parallel.
- Have at least one concluding sentence after you have addressed all cases.

1 Example 1

If n is an integer, then $n^3 + n$ is even.

1.1 Proof in Symbols

Case 1: If n is even, then $n^3 + n$ is even.

Given	Inferred	Rule of Inference	
n is even	$\exists k \in \mathbb{Z} 2k = n.$	definition of even	
	n = 2k for some integer k	$existential\ instantiation$	
	$n^{3} = 8k^{3}$	algebra — $cube$ $n = 2k$	
	$n^3 + n = 8k^3 + 2k$	algebra - substitute	
	$n^3 + n = 2(4k^2 + k)$	algebra — factor out a 2	
	Let $l = (4k^2 + k)$	closure of integers	
	$n^3 + n = 2l$	$algebra\ -substitution$	
	$n^3 + n$ is even	definition of even	

Case 2: If n is odd, then $n^3 + n$ is even.

Given	Inferred	Rule of Inference
n is odd	$\exists k \in \mathbb{Z} 2k + 1 = n.$	definition of odd
	n = 2k + 1 for some integer k	$existential\ instantiation$
	$n^3 = 8k^3 + 12k^2 + 6k + 1$	algebra — $cube$ $n = 2k + 1$
	$n^3 + n = (8k^3 + 12k^2 + 6k + 1) + (2k + 1)$	$algebra\\ substitution$
	$n^3 + n = (8k^3 + 12k^2 + 8k + 2)$	algebra — collect like terms
	$n^3 + n = 2(4k^3 + 6k^2 + 4k + 1)$	algebra — factor out a 2
	Let $l = (4k^3 + 6k^2 + 4k + 1)$	closure of integers
	$n^3 + n = 2l$	$algebra\\ substitution$
	$n^3 + n$ is even	definition of even

Proof: if n is an integer, then $n^3 + 3$ is even.

	Given	Previous knowledge		
1	$n \in \mathbb{Z}$	All integers are either even or odd. basi	$c \ arithmetic$	
2		if n is even, then $n^3 + n$ is even Len	nma 1	
3		if n is odd, then $n^3 + n$ is even Lew	nma 2	
	Inferred		Rule of inference	
4	n is either even or odd		Universal instantiation of 1 (p174)	
5	$(n \text{ even} \rightarrow n^3 + n \text{ even}) \land (n \text{ odd} \rightarrow n^3 + n \text{ odd})$		conjunction of 2 and 3.	
6	$(n \text{ even } \lor n \text{ odd}) \to n^3 + n \text{ even}$		logical equivalence with 5	
7	$n^3 + n$ even		modes ponens of 4 and 6	

1.2 Proof in Words

Let n be an integer. We will prove that $n^3 + 3$ is even by considering two cases:

- n is even.
- n is odd.

First consider the case where n is even. From the definition of even, we know that n = 2k for some integer k. We cube n = 2k to get $n^3 = 8k^3$; then we add n = 2k + 1 to get $n^3 + n = 8k^3 + 2k$. Next, we factor out a 2 and get $n^3 + n = 2(4k^3 + k)$. Let $l = 4k^3 + k$. We can now see that $n^3 + n = 2l$ for some integer l. Thus, from the definition of even, we know that $n^3 + n$ is even.

Next consider the case where n is odd. From the definition of odd, we know that n = 2k + 1 for some integer k. We cube n = 2k + 1 to get $n^3 = 8k^3 + 12k^2 + 6k + 1$; then, we add n = 2k + 1 to get that $n^3 + n = 8k^3 + 12k^2 + 8k + 2$. We then factor out a 2 to see that $n^3 + n = 2(4k^3 + 6k^2 + 4k + 1)$. Let $l = (4k^3 + 6k^2 + 4k + 1)$. We now have an integer l such that $2l = n^3 + n$. Thus, from the definition of even, we know that $n^3 + n$ is even.

Because we have shown that $n^3 + n$ is even when n is either even or odd, we have shown that $n^3 + n$ is even for all integers \blacksquare