Indirect Proof - Contrapositive

1 Example 1

Definition: An integer n is odd if and only if there exists an integer k such that $n=2 k+1$.
If n^{3} is even, then n is even.
If we try to prove this directly, we don't get very far. We infer that $n^{3}=2 k$ for some integer k; but, we don't know what to do next.

Instead we can use the fact that $p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p$. This means that if we prove that if n is odd, then n^{3} is odd is true, then we have proven that if n^{3} is even, then n is even is also true.

1.1 Proof in Symbols

Given	Inferred	Rule of Inference
n is odd.	$\exists k \in \mathbb{Z} \mid 2 k+1=n$	definition of odd.
	$n=2 k+1$ for some integer k	existential instantiation.
	$n^{3}=(2 k+1)^{3}$	algebra - cube $n=2 k+1$
	$n^{3}=8 k^{3}+12 k^{2}+6 k+1$	algebra - expand
	$n^{3}=2\left(4 k^{3}+6 k^{2}+3 k\right)+1$	algebra - factor out 2
	Let l be an integer such that $l=4 k^{3}+6 k^{2}+3 k$	closure of integers
	$n^{3}=2 l+1$	algebra - substitution
	n^{3} is odd	definition of odd

1.2 Proof in Words

We will prove that if n^{3} is even then n is even indirectly using the contrapositive. That is, we will prove that if n is odd, then n^{3} is odd.

Assume that n is odd. From the definition of odd, we know that there exists an integer k such that

$$
\begin{equation*}
n=2 k+1 \tag{1}
\end{equation*}
$$

We then cube equation 1 to see that

$$
\begin{equation*}
n^{3}=8 k^{3}+8 k^{2}+6 k+1 \tag{2}
\end{equation*}
$$

Next, we factor out a 2 to get

$$
\begin{equation*}
n^{3}=2\left(4 k^{3}+3 k^{2}+k\right)+1 \tag{3}
\end{equation*}
$$

If we let $l=4 k^{3}+3 k^{2}+k$ and substitute l into equation 3 , we see that $n^{3}=2 l+1$. Thus, by definition of odd, n^{3} is odd as desired.

