Direct Proofs

1 Example 1

Definition. An integer n is even if and only if there exists and integer k such that 2k = nLet n be an integer. If n is even then n^2 is even.

1.1 Proof in Symbols

Given	Inferred	Rule of Inference
n is even	$\exists k \in \mathbb{Z} 2k = n$	modus ponens using Definition of "even" and given
	k is an integer such that $2k = n$.	existential instantiation (Table 2, p174)
	$4k^2 = n^2$	$algebra - square \ 2k = n$
	$2 \cdot 2k^2 = n^2$	algebra — factor out 2
	Let l be an integer such that $l = 2k^2$.	closure of integers
	$2l = n^2$	$algebra$ — $substitute \ l$ for $2k^2$
	$\exists l \in \mathbf{Z} 2l = n^2$	existential generalization(Table 2, p174)
	n^2 is even	Inferred (6) and definition of "even"

1.2 Proof in words

We assume that n is even. From the definition of even, we know that there is an integer k such that

$$2k = n \tag{1}$$

We can square both sides of equation 1 to see that $4k^2 = n^2$. We can then factor out a 2 and get:

$$2 \cdot 2k^2 = n^2 \tag{2}$$

Because the integers are closed under addition and multiplication, we know that there exists an integer l such that $2k^2 = l$. When we substitute l into equation 2 we see that $2l = n^2$. Because we have found an integer l such that $2l = n^2$, the definition of even tells us that n^2 is even.

2 Example 2

Definition: A number s is *rational* if and only if there exists two integers x and y such that $\frac{x}{y} = s$. If s and t are rational numbers, then s + t is also rational.

2.1 Proof in Symbols

Given	Inferred	Rule of Inference
s is rational	$\exists a, b \in \mathbb{Z} \frac{a}{b} = s$	definition of "Rational"
t is rational	$\frac{a}{b} = s$ for some $a, b \in \mathbb{Z}$.	existential instantiation (Table 2, p174)
	$\exists c, d \in \mathbf{Z} \frac{c}{d} = t$	definition of "Rational"
	$\frac{a}{b} = t$ for some $c, d \in \mathbb{Z}$	existential instantiation (Table 2, p174)
	$s + t = \frac{a}{b} + \frac{c}{d}$	algebra - substitution
	$s + t = \frac{a d + b c}{b d}$	algebra — $multiplication$ of fractions
	Let n be an integer such that $n = ad + bc$	closure of integers
	Let m be an integer such that $m = bd$	closure of integers
	$s + t = \frac{n}{m}$	algebra - substitution
	s + t is rational	definition of "Rational"

2.2 Proof in words

Let s and t be rational numbers. From the definition of rational, we know that there exist integers a and b such that $s = \frac{a}{b}$. Likewise, we know that there exist integers c and d such that $t = \frac{c}{d}$. From here we can substitute $\frac{a}{b}$ for s and $\frac{b}{c}$ for t and see that $s + t = \frac{a}{b} + \frac{c}{d}$. This is equivalent to saying that $s + t = \frac{ad+bc}{bd}$. Let n = ad + bc and let m = bd. Because the integers are closed under addition and multiplication, we know that n and m are integers. Thus, we have found two integer m and n such hat $\frac{m}{m} = s + t$. Hence, we know that s + t is rational by definition.

3 Example 3

Definition: Let a, and b be integers. We say a divides b (written a|b if and only if $\exists k \in \mathbb{Z} | ak = b$. Let a, b, and c be integers. If a|b and a|c, then a|bc.

3.1 Proof in Symbols

Given: a|b, a|c

	Inferred	Rule of Inference
1	$\exists k \in \mathbb{Z} ak = b$	definition of divices
2	$\exists l \in \mathbf{Z} al = c$	definition of divides
3	$ak = b$ for some $k \in \mathbb{Z}$	$existential\ instantiation$
4	$aj = c$ for some $j \in \mathbb{Z}$	$existential\ instantiation$
5	bc = akaj	algebra — $multiply$ 4 and 5
6	bc = a(kaj)	algebra — $associtivity$ of integers
7	Let $l \in \mathbb{Z} = kaj$	$closure \ of \ integers \ under \ multiplication$
8	bc = al	algebra — substitue 7 into 6
9	a bc	definition of divides

4 Proof in words

We will prove that, given integers a, b, and c, if a|b and a|c, then a|bc. We will do this by finding an integer j such that aj = bc.nc

The definition of divides tells us that

$$ak = b$$
 (3)

for some integer k. Likewise, we know that

$$al = c$$
 (4)

for some integer c. We can multiply equations 3 and 4 to get

$$bc = akal$$
 (5)

Now let j be an integer such that j = kal. When we substitute j for kal in equation 5, we see that bc = aj. Thus, we have found an integer j such that aj = bc. Therefore, the definition of divides tells us that a|bc.

5 Another Proof in Words

Given that a, b and c are integers, we wish to show that a|bc. From the definition of divides, we know that there exist integers k and l such that ak = b and al = c. We can multiply these two equations to see that bc = akal = a(kal). Let j be an integer such that j = kal. We can substitue j into the equation bc = akal to see that bc = aj. Finally, the definition of divides tells us that a|bc.