Direct Proofs

1 Example 1

Definition. An integer n is even if and only if there exists and integer k such that $2 k=n$
Let n be an integer. If n is even then n^{2} is even.

1.1 Proof in Symbols

Given	Inferred	Rule of Inference
n is even	$\exists k \in \mathbb{Z} \mid 2 k=n$	modus ponens using Definition of "even" and given
	k is an integer such that $2 k=n$.	existential instantiation (Table 2, p174)
	$4 k^{2}=n^{2}$	algebra - square $2 k=n$
	$2 \cdot 2 k^{2}=n^{2}$	algebra - factor out 2
	Let l be an integer such that $l=2 k^{2}$.	closure of integers
	$2 l=n^{2}$	algebra - substitute l for $2 k^{2}$
	$\exists l \in \mathbb{Z} \mid 2 l=n^{2}$	existential generalization(Table 2, p174)
	n^{2} is even	Inferred (6) and definition of "even"

1.2 Proof in words

We assume that n is even. From the definition of even, we know that there is an integer k such that

$$
\begin{equation*}
2 k=n \tag{1}
\end{equation*}
$$

We can square both sides of equation 1 to see that $4 k^{2}=n^{2}$. We can then factor out a 2 and get:

$$
\begin{equation*}
2 \cdot 2 k^{2}=n^{2} \tag{2}
\end{equation*}
$$

Because the integers are closed under addition and multiplication, we know that there exists an integer l such that $2 k^{2}=l$. When we substitute l into equation 2 we see that $2 l=n^{2}$. Because we have found an integer l such that $2 l=n^{2}$, the definition of even tells us that n^{2} is even.

2 Example 2

Definition: A number s is rational if and only if there exists two integers x and y such that $\frac{x}{y}=s$.
If s and t are rational numbers, then $s+t$ is also rational.

2.1 Proof in Symbols

Given	Inferred	Rule of Inference
s is rational	$\exists a, b \in \mathbb{Z} \backslash \frac{a}{b}=s$	definition of "Rational"
t is rational	$\frac{a}{b}=s$ for some $a, b \in \mathbb{Z}$.	existential instantiation (Table 2, p174)
	$\exists c, d \in \mathbb{Z} \backslash \frac{c}{d}=t$	definition of "Rational"
	$\frac{a}{b}=t$ for some $c, d \in \mathbb{Z}$	existential instantiation (Table 2, p174)
	$s+t=\frac{a}{b}+\frac{c}{d}$	algebra - substitution
	$s+t=\frac{a d+b c}{b d}$	algebra - multiplication of fractions
	Let n be an integer such that $n=a d+b c$	closure of integers
	Let m be an integer such that $m=b d$	closure of integers
	$s+t=\frac{n}{m}$	algebra - substitution
	$s+t$ is rational	definition of "Rational"

2.2 Proof in words

Let s and t be rational numbers. From the definition of rational, we know that there exist integers a and b such that $s=\frac{a}{b}$. Likewise, we know that there exist integers c and d such that $t=\frac{c}{d}$. From here we can substitute $\frac{a}{b}$ for s and $\frac{b}{c}$ for t and see that $s+t=\frac{a}{b}+\frac{c}{d}$. This is equivalent to saying that $s+t=\frac{a d+b c}{b d}$. Let $n=a d+b c$ and let $m=b d$. Because the integers are closed under addition and multiplication, we know that n and m are integers. Thus, we have found two integer m and n such hat $\frac{n}{m}=s+t$. Hence, we know that $s+t$ is rational by definition.

3 Example 3

Definition: Let a, and b be integers. We say a divides b (written $a \mid b$ if and only if $\exists k \in \mathbb{Z} \mid a k=b$.
Let a, b, and c be integers. If $a \mid b$ and $a \mid c$, then $a \mid b c$.

3.1 Proof in Symbols

Given: $a|b, a| c$

	Inferred	Rule of Inference
1	$\exists k \in \mathbb{Z} \mid a k=b$	definition of divices
2	$\exists l \in \mathbb{Z} \mid a l=c$	definition of divides
3	$a k=b$ for some $k \in \mathbb{Z}$	existential instantiation
4	$a j=c$ for some $j \in \mathbb{Z}$	existential instantiation
5	$b c=a k a j$	algebra - multiply 4 and 5
6	$b c=a(k a j)$	algebra - associtivity of integers
7	Let $l \in \mathbb{Z}=k a j$	closure of integers under multiplication
8	$b c=a l$	algebra - substitue 7 into 6
9	$a \mid b c$	definition of divides

4 Proof in words

We will prove that, given integers a, b, and c, if $a \mid b$ and $a \mid c$, then $a \mid b c$. We will do this by finding an integer j such that $a j=b c$.nc

The definition of divides tells us that

$$
\begin{equation*}
a k=b \tag{3}
\end{equation*}
$$

for some integer k. Likewise, we know that

$$
\begin{equation*}
a l=c \tag{4}
\end{equation*}
$$

for some integer c. We can multiply equations 3 and 4 to get

$$
\begin{equation*}
b c=a k a l \tag{5}
\end{equation*}
$$

Now let j be an integer such that $j=k a l$. When we substitute j for $k a l$ in equation 5 , we see that $b c=a j$. Thus, we have found an integer j such that $a j=b c$. Therefore, the definition of divides tells us that $a \mid b c$.

5 Another Proof in Words

Given that a, b and c are integers, we wish to show that $a \mid b c$. From the definition of divides, we know that there exist integers k and l such that $a k=b$ and $a l=c$. We can multiply these two equations to see that $b c=a k a l=a(k a l)$. Let j be an integer such that $j=k a l$. We can subsitite j into the equation $b c=a k a l$ to see that $b c=a j$. Finally, the definition of divides tells us that $a \mid b c$.

