1 One - To - One

We say a function $f: A \rightarrow B$ is one-to-one, or injective, if f always maps different elements of A to different elements of B. Formally, $f: A \rightarrow B$ is injective if and only if $\forall x, y \in A,[(x \neq y) \rightarrow f(x) \neq$ $f(y)]$. Intuitively, this means that if we give f different inputs, we get different outputs. Consider these examples:

- $f:$ States \rightarrow Cities defined by $f(x)=$ capital of x : Because each U.S. city is the capital of at most one state, f is one-to-one (i.e. maps exactly one city to each state).
- $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x+1$ is also one-to-one.
- $\frac{f: \text { Cities } \rightarrow \text { States defined by } f(x)=\text { location of } x}{\text { Georgia }}$ is not one-to-one because $f($ Atlanta $)=f($ Macon $)=$ Georgia.

If we were to draw lines to connect elements of A and B, each element of A would be connected to exactly one element of B (this is the definition of function), and each element of B would be connected to at most one element of A. Note that it is acceptable for some elements of B to not be connected to any elements of A. Refer to figures 3,4 , and 5 on pages 59-61 of the textbook.

1-a Proving f is Injective

To prove that $f: A \rightarrow B$ is injective we must prove that, for every pair $x, y \in A$, if $x \neq y$, then $f(x) \neq f(y)$.

The general method of proving statements with universal quantifiers (i.e. " $\forall x, P(x)$ "), is to prove $P(x)$ true for an arbitrary x. Universal generalization then allows us to conclude that $P(x)$ is true for all x. Specifically, to prove that f is injective we will prove that for arbitrary elements $x, y \in A$, if $x \neq y$, then $f(x) \neq f(y) .{ }^{1}$

When dealing with specific functions (i.e. functions with a definition, such as $f(x)=x^{2}$, as opposed to a general function $f: A \rightarrow B$), it is often difficult to apply rules of inference to the statement $x \neq y$. However, recall that an implication and its contrapositive are logically equivalent. This means that in the case of injective functions, the following propositions have the same truth value:

- $x \neq y \rightarrow f(x) \neq f(y)$
- $\neg(f(x) \neq f(y)) \rightarrow \neg(x \neq y)$
- $f(x)=f(y) \rightarrow x=y$

Therefore, instead of proving that if $x \neq y$, then $f(x) \neq f(y)$, we may instead prove that if $f(x)=f(y)$, then $x=y$.

[^0]
1-a-i Proof Outline

In summary, to prove $f: A \rightarrow B$ is injective:

1. Let x, and y be arbitrary (and not necessarily unique) elements of $A{ }^{2}$
2. Prove that either

- if $x \neq y$ then $f(x) \neq f(y)$; or
- if $f(x)=f(y)$ then $x=y$.

3. State that because the proposition in step 2 is true for arbitrary x and y, it is true for all x and y.
4. Conclude that f is injective.

1-a-ii Example Proof

We will prove that $f: \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$defined by $f(x)=x^{2}$ is one to one.
Let x and y be arbitrary elements of \mathbb{R}^{+}. We will use the contrapositive to show that if $x \neq y$, then $f(x) \neq f(y)$. In other words, we will prove that if $f(x)=f(y)$, then $x=y$.

Assume that $f(x)=f(y)$. The definition of f tells us that $x^{2}=y^{2}$. This is equivalent to saying $x^{2}-y^{2}=0$. We can factor $x^{2}-y^{2}$ into $(x-y)(x+y)$ and see that $(x-y)(x+y)=0$. We know that the product of two real numbers $a b$ is zero only if at least one of a or b is zero. Therefore, either $(x-y)=0$, or $(x+y)=0$. This means that either $x=y$ or $x=-y$. Because x and y are both positive by definition, ${ }^{3}$ the second case is impossible. Therefore, we know that $x=y$ as desired.

We have thus shown that for arbitrary values of x and y, if $x \neq y$, then $f(x) \neq f(y)$. We may therefore conclude that for any pair $x, y \in A$, if $x \neq y$, then $f(x) \neq f(y)$. Hence, f is one-to-one by definition.

2 Onto

We say a function $f: A \rightarrow B$ is "onto" or surjective if every element in B corresponds to some element in A. Formally, $f: A \rightarrow B$ is surjective if and only if $\forall b \in B \exists a \in A \mid f(a)=b$. In other words, there are no "leftovers" in the codomain. (Again, refer to figures 3,4 , and 5 on pages 59-61 of the textbook.) Consider the following examples:

- f : Cities \rightarrow States defined by $f(x)=$ location of x is surjective because every state contains at least one city. Notice that each state corresponds to may cities. This is acceptable.
- $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x+1$ is surjective. For every $y \in \mathbb{R}$, we can find an $x \in \mathbb{R}$ (namely $x=(y-1)$) such that $f(x)=y$. (In our case $f(x)=f(y-1)=(y-1)+1=y)$

[^1]- $f:$ States \rightarrow Cities defined by $f(x)=$ capital of x is not surjective because there are many cities that are not the capital city of any state. For example, Detroit.
- $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=x^{2}$ is not surjective because there is no real number such that $f(x)=-1$.

2-a Proving f is Surjective

To prove that $f: A \rightarrow B$ is surjective, we must demonstrate that for every $b \in B$, there exists an $a \in A$ such that $f(a)=b$. When dealing a specific function, we can often do this by constructing an a based on an arbitrary b. In other words, given b we find a "formula" for a. However, because b is an arbitrary element, finding this formula is not always easy. (A good way to obtain extra information about b is to use cases.)

2-a-i Proof Outline

In summary, to prove $f: A \rightarrow B$ is surjective:

1. Let b be an arbitrary element of B.
2. Prove that there exists an $a \in A$ such that $f(a)=b$. There are two possible approaches:

- Construct a based on b. In other words, find a "formula" for a based on b.
- Simply show that some a must exist. This is more difficult, but is sometimes necessary.

3. State that because there exists an a for an arbitrary b, then there exists an a for every b.
4. Conclude f is surjective.

2-a-ii Example Proof

We will prove that $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=3 x+7$ is surjective.
Let y be an arbitrary real number. Consider $x=\frac{y-7}{3}$. Because the real numbers are closed under addition and multiplication, ${ }^{4}$ we know that x is in the domain, (i.e. $x \in \mathbb{R}$). Furthermore,

$$
f(x)=f\left(\frac{y-7}{3}\right)=3 \frac{y-7}{3}+7=y
$$

Thus, we can see that for any y we can find an x such that $f(x)=y$. Hence f is surjective by definition.

[^2]
3 Bijective and Inverse

Definition. $f: A \rightarrow B$ and $g: B \rightarrow A$ are inverses if and only if: $\forall a \in A, g(f(a))=a$ and $\forall b \in b$, $f(g(b))=b$. Intuitively, g is an inverse of f if g "reverses" the change made by f.

Definition. $f: A \rightarrow B$ is bijective if and only if it is injective and surjective.
Most proofs that f is bijective will contain two separate parts: A proof that f is injective, and a proof that f is bijective.

3-a Proof using Bijective and Inverse

Theorem: $f: A \rightarrow B$ has an inverse if and only if f is bijective.

3-a-i Outline

This proof has several parts. We begin with an outline:

1. If f has an inverse, then f is bijective.
(a) If f has an inverse, then f is injective.
(b) If f has an inverse, then f is surjective.
2. If f is bijective, then f has an inverse.

First, to prove a statement of the form " a if and only if b ", we must prove both "if a, then b " and "if b, then a ". This gives us steps 1 and 2. Next, to show that f is bijective, we must show that f is injective and that f is surjective. Thus, we break step 1 into steps 1a and 1b.

We now sketch a proof of each step:

- 1a: We will do this by contradiction. We will assume f has an inverse g and assume to the contrary that f is not injective. Then we will demonstrate why it is impossible for f to not be injective.
- 1b: We will prove this directly. We will assume that f has an inverse g. Then we will choose an arbitrary element $b \in B$ and construct an $a \in A$ such that $f(a)=b$.
- 2: We will prove this directly. We will assume that f is bijective. We will then construct a function $g: B \rightarrow A$ and prove that
$-g$ is a valid function from B to A.
$-g$ is an inverse of f.

3-a-ii Formal Proof

We will prove that $f: A \rightarrow B$ has an inverse if and only if f is bijective. To prove this, we must prove two things:

1. If f has an inverse, then f is bijective.
2. If f is bijective, then f has an inverse.

We begin by proving part 1 : We assume f has an inverse. Let $g: B \rightarrow A$ be that inverse. To show that f is bijective we must show that f is both injective and surjective. We first prove by contradiction that f is injective. Assume to the contrary that f is not injective. Because we assume f is not injective, we know that there there exist $a_{1}, a_{2} \in A$ such that $a_{1} \neq a_{2}$ and $f\left(a_{1}\right)=f\left(a_{2}\right)=b$ (where $b \in B$). From the definition of "inverse", we know that $g(b)=a_{1}$. However, this means that $g\left(f\left(a_{2}\right)\right)=a_{1}$ which contradicts the fact that g is the inverse of f. Hence f must be injective.

Next we show that f is surjective: Let b be an arbitrary element of B and consider $g(b)$. From the definition of inverse, we know that $f(g(b))=b$. Therefore, for an arbitrary element $b \in B$, we have found an element $a=g(b)$ such that $f(a)=b$. Thus; we know that every $b \in B$ corresponds to such an $a \in A$; hence f is surjective.

Because we have shown f to be both surjective and injective, we can conclude that f is bijective as desired.

We must now prove part 2. We will do this by constructing a function $g: B \rightarrow A$ then demonstrating that g is a valid function and, in fact, the inverse of f.

Define $G: B \rightarrow A$ as follows: $g(b)=a$ where a is the unique element of f such that $f(a)=b$. Because f is surjective, we know that such an a exists. Because f is injective, we know that it is unique (i.e. that there is only one possible value for $g(b)$. Therefore, g is a valid function from B to A.

Finally, we need only show that g is, in fact, the inverse of f. Let a be an arbitrary element of A. If we let $b=f(a)$, the definition of g tells us that $g(b)=g(f(a))=a$ as desired. Likewise, let b be an arbitrary element of b. Let $a=g(b)$. Again by definition of g, we know that $f(a)=f(g(b))=b$. Hence, g is an inverse of f.

We have now proven both 1 and 2 , thereby proving that $f: A \rightarrow B$ has an inverse if and only if f is bijective.

[^0]: ${ }^{1}$ Note that x and y are arbitrary elements of A, not any elements of A. We do not assign x and y specific values; to the contrary, the only information we assume about x and y is that they are elements of A.

[^1]: ${ }^{2}$ Be sure A is not empty!
 ${ }^{3}$ This means that we "defined" x and y to be elements of the positive real numbers.

[^2]: ${ }^{4}$ In this case, multiplication by $\frac{1}{3}$.

