1 One - To - One

We say a function f : A — B is one-to-one, or injective, if f always maps different elements of A to
different elements of B. Formally, f : A — B is injective if and only if Vz,y € A,[(z #y) — f(z) #
f(y)]- Intuitively, this means that if we give f different inputs, we get different outputs. Consider these

examples:

e f: States — Clities defined by f(x) = capital of z: Because each U.S. city is the capital of at

most one state, f is one-to-one (i.e. maps exactly one city to each state).

e f: R — R defined by f(xz) =z + 1 is also one-to-one.

o f: Clities — States defined by f(z) = location of z is not one-to-one because f(Atlanta) = f(Macon) =

Georgia.

e f:R — R defined by f(x) = 2® is not one-to-one because f(—1) = f(1) = 1.

If we were to draw lines to connect elements of A and B, each element of A would be connected to
exactly one element of B (this is the definition of function), and each element of B would be connected
to at most one element of A. Note that it is acceptable for some elements of B to not be connected to
any elements of A. Refer to figures 3, 4, and 5 on pages 59-61 of the textbook.

1-a Proving f is Injective

To prove that f : A — B is injective we must prove that, for every pair x,y € A, if x # y, then
flx) # f(y).

The general method of proving statements with universal quantifiers (i.e. “Vzx, P(z)”), is to prove
P(z) true for an arbitrary z. Universal generalization then allows us to conclude that P(x) is true for
all . Specifically, to prove that f is injective we will prove that for arbitrary elements x,y € A, if

x #y, then f(z) # f(y)."

When dealing with specific functions (i.e. functions with a definition, such as f(z) = z?

, as opposed
to a general function f : A — B), it is often difficult to apply rules of inference to the statement x # y.
However, recall that an implication and its contrapositive are logically equivalent. This means that in
the case of injective functions, tthe following propositions have the same truth value:

e xFy— f(x)# fly)
o ~(f(x) # f(y) = ~(z #y)
o flx)=fly) »z=y

Therefore, instead of proving that if z # y, then f(z) # f(y), we may instead prove that if f(x) = f(y),
then z = y.

INote that x and y are arbitrary elements of A, not any elements of A. We do not assign  and y specific values; to
the contrary, the only information we assume about x and y is that they are elements of A.



1-a-1 Proof Outline

In summary, to prove f : A — B is injective:

1. Let x, and y be arbitrary (and not necessarily unique) elements of A.2

2. Prove that either

o if o £y then f(z) £ f(y); or
o if f(z) = f(y) then z = y.

3. State that because the proposition in step 2 is true for arbitrary z and y, it is true for all  and y.

4. Conclude that f is injective.

1-a-ii Example Proof

We will prove that f: IR* — IR™ defined by f(z) = 22 is one to one.

Let = and y be arbitrary elements of R™. We will use the contrapositive to show that if = # y, then
f(x) # f(y). In other words, we will prove that if f(z) = f(y), then z = y.

Assume that f(z) = f(y). The definition of f tells us that #? = y2. This is equivalent to saying
z? —y?> = 0. We can factor z — y? into (z — y)(z + y) and see that (z —y)(z +y) = 0. We know
that the product of two real numbers ab is zero only if at least one of a or b is zero. Therefore, either
(x—y) =0, or (x+y) = 0. This means that either z = y or z = —y. Because z and y are both positive

by definition,? the second case is impossible. Therefore, we know that = = y as desired.

We have thus shown that for arbitrary values of z and y, if © # y, then f(z) # f(y). We may
therefore conclude that for any pair z,y € A, if x # y, then f(z) # f(y). Hence, f is one-to-one by
definition. ®

2 Onto

We say a function f : A — B is “onto” or surjective if every element in B corresponds to some element,
in A. Formally, f : A — B is surjective if and only if Vb € B3a € A|f(a) = b. In other words, there
are no “leftovers” in the codomain. (Again, refer to figures 3, 4, and 5 on pages 59-61 of the textbook.)
Consider the following examples:

e f: Cities — States defined by f(x) = location of x is surjective because every state contains at

least one city. Notice that each state corresponds to may cities. This is acceptable.

e f: R — R defined by f(x) =z + 1 is surjective. For every y € R, we can find an z € R (namely
x = (y — 1)) such that f(z) =y. (Inour case f(z) = fly—1)=(y—-1)+1=y)

2Be sure A is not empty!
3This means that we “defined” = and y to be elements of the positive real numbers.



e f: States — Clities defined by f(x) =capital of z is not surjective because there are many cities

that are not the capital city of any state. For example, Detroit.

e f: R — R defined by f(z) = 2 is not surjective because there is no real number such that

fla) = 1.

2-a Proving f is Surjective

To prove that f : A — B is surjective, we must demonstrate that for every b € B, there exists an a € A
such that f(a) = b. When dealing a specific function, we can often do this by constructing an a based
on an arbitrary b. In other words, given b we find a “formula” for a. However, because b is an arbitrary
element, finding this formula is not always easy. (A good way to obtain extra information about b is to

use cases.)

2-a-i Proof Outline

In summary, to prove f : A — B is surjective:

1. Let b be an arbitrary element of B.
2. Prove that there exists an a € A such that f(a) = b. There are two possible approaches:

e Construct a based on b. In other words, find a “formula” for a based on b.

e Simply show that some a must exist. This is more difficult, but is sometimes necessary.
3. State that because there exists an a for an arbitrary b, then there exists an a for every b.

4. Conclude f is surjective.

2-a-ii Example Proof

We will prove that f: IR — IR defined by f(z) = 3z + 7 is surjective.

Let y be an arbitrary real number. Consider z = qu Because the real numbers are closed under

addition and multiplication,* we know that x is in the domain, (i.e. € R). Furthermore,

y—-1 y—-7
flx) = f( )=3 +7=y
3 3
Thus, we can see that for any y we can find an z such that f(z) = y. Hence f is surjective by

definition. MW

4In this case, multiplication by %



3 Bijective and Inverse

Definition. f: A — B and g : B — A are inverses if and only if: Va € A, g(f(a)) = a and Vb € b,
f(g(b)) = b. Intuitively, g is an inverse of f if g “reverses” the change made by f.

Definition. f: A — B is bijective if and only if it is injective and surjective.

Most proofs that f is bijective will contain two separate parts: A proof that f is injective, and a
proof that f is bijective.

3-a Proof using Bijective and Inverse

Theorem: f: A — B has an inverse if and only if f is bijective.

3-a-i Outline

This proof has several parts. We begin with an outline:

1. If f has an inverse, then f is bijective.

(a) If f has an inverse, then f is injective.

(b) If f has an inverse, then f is surjective.

2. If f is bijective, then f has an inverse.

First, to prove a statement of the form “a if and only if b”, we must prove both “if a, then §” and
“if b, then a”. This gives us steps 1 and 2. Next, to show that f is bijective, we must show that f is

injective and that f is surjective. Thus, we break step 1 into steps la and 1b.

We now sketch a proof of each step:

e la: We will do this by contradiction. We will assume f has an inverse g and assume to the
contrary that f is not injective. Then we will demonstrate why it is impossible for f to not be

injective.

e 1b: We will prove this directly. We will assume that f has an inverse g. Then we will choose an
arbitrary element b € B and construct an a € A such that f(a) =b.

e 2: We will prove this directly. We will assume that f is bijective. We will then construct a

function g : B — A and prove that

— g is a valid function from B to A.

— g is an inverse of f.



3-a-ii Formal Proof

We will prove that f: A — B has an inverse if and only if f is bijective. To prove this, we must prove
two things:

1. If f has an inverse, then f is bijective.

2. If f is bijective, then f has an inverse.

We begin by proving part 1: We assume f has an inverse. Let g : B — A be that inverse. To show
that f is bijective we must show that f is both injective and surjective. We first prove by contradiction
that f is injective. Assume to the contrary that f is not injective. Because we assume f is not injective,
we know that there there exist aj,as € A such that a1 # as and f(a1) = f(az) = b (where b € B).
From the definition of “inverse”, we know that ¢g(b) = a;. However, this means that g(f(a2)) = a1

which contradicts the fact that g is the inverse of f. Hence f must be injective.

Next we show that f is surjective: Let b be an arbitrary element of B and consider g(b). From the
definition of inverse, we know that f(g(b)) = b. Therefore, for an arbitrary element b € B, we have
found an element a = g(b) such that f(a) = b. Thus; we know that every b € B corresponds to such an
a € A; hence f is surjective.

Because we have shown f to be both surjective and injective, we can conclude that f is bijective as

desired.

We must now prove part 2. We will do this by constructing a function g : B — A then demonstrating
that g is a valid function and, in fact, the inverse of f.

Define G : B — A as follows: g(b) = a where a is the unique element of f such that f(a) = b.
Because f is surjective, we know that such an a exists. Because f is injective, we know that it is unique
(i.e. that there is only one possible value for g(b). Therefore, g is a valid function from B to A.

Finally, we need only show that ¢ is, in fact, the inverse of f. Let a be an arbitrary element of A.
If we let b = f(a), the definition of g tells us that g(b) = g(f(a)) = a as desired. Likewise, let b be an
arbitrary element of b. Let a = ¢g(b). Again by definition of g, we know that f(a) = f(g(b)) = b. Hence,

g is an inverse of f.

We have now proven both 1 and 2, thereby proving that f : A — B has an inverse if and only if f
is bijective. H



