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Chapter 13

PRINCIPLE OF

INCLUSION-EXCLUSION

13.1. Introduction

To introduce the ideas, we begin with a simple example.

Example 13.3.1. Consider the sets S = {1, 2, 3, 4}, T = {1, 3, 5, 6, 7} and W = {1, 4, 6, 8, 9}. Suppose
that we would like to count the number of elements of their union S ∪ T ∪ W . We might do this in the
following way:

(1) We add up the numbers of elements of S, T and W . Then we have the count

|S| + |T | + |W | = 14.

Clearly we have over-counted. For example, the number 3 belongs to S as well as T , so we have counted
it twice instead of once.

(2) We compensate by subtracting from |S|+ |T |+ |W | the number of those elements which belong
to more than one of the three sets S, T and W . Then we have the count

|S| + |T | + |W | − |S ∩ T | − |S ∩ W | − |T ∩ W | = 8.

But now we have under-counted. For example, the number 1 belongs to all the three sets S, T and W ,
so we have counted it 3 − 3 = 0 times instead of once.

(3) We therefore compensate again by adding to |S|+ |T |+ |W | − |S ∩T | − |S ∩W | − |T ∩W | the
number of those elements which belong to all the three sets S, T and W . Then we have the count

|S| + |T | + |W | − |S ∩ T | − |S ∩ W | − |T ∩ W | + |S ∩ T ∩ W | = 9,

which is the correct count, since clearly S ∪ T ∪ W = {1, 2, 3, 4, 5, 6, 7, 8, 9}.

† This chapter was written at Macquarie University in 1992.
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From the argument above, it appears that for three sets S, T and W , we have

|S ∪ T ∪ W | = (|S| + |T | + |W |)︸ ︷︷ ︸
one at a time

3 terms

− (|S ∩ T | + |S ∩ W | + |T ∩ W |)︸ ︷︷ ︸
two at a time

3 terms

+ (|S ∩ T ∩ W |)︸ ︷︷ ︸
three at a time

1 term

.

13.2. The General Case

Suppose now that we have k finite sets S1, . . . , Sk. We may suspect that

|S1 ∪ . . . ∪ Sk| = (|S1| + . . . + |Sk|)︸ ︷︷ ︸
one at a time

(k
1) terms

− (|S1 ∩ S2| + . . . + |Sk−1 ∩ Sk|)︸ ︷︷ ︸
two at a time

(k
2) terms

+ (|S1 ∩ S2 ∩ S3| + . . . + |Sk−2 ∩ Sk−1 ∩ Sk|)︸ ︷︷ ︸
three at a time

(k
3) terms

− . . . + (−1)k+1 (|S1 ∩ . . . ∩ Sk|)︸ ︷︷ ︸
k at a time
(k

k) terms

.

This is indeed true, and can be summarized as follows.

PRINCIPLE OF INCLUSION-EXCLUSION Suppose that S1, . . . , Sk are non-empty finite sets.
Then ∣∣∣∣∣∣

k⋃
j=1

Sj

∣∣∣∣∣∣ =
k∑

j=1

(−1)j+1
∑

1≤i1<...<ij≤k

|Si1 ∩ . . . ∩ Sij
|, (1)

where the inner summation ∑
1≤i1<...<ij≤k

is a sum over all the (
k

j

)

distinct integer j-tuples (i1, . . . , ij) satisfying 1 ≤ i1 < . . . < ij ≤ k.

Proof. Consider an element x which belongs to precisely m of the k sets S1, . . . , Sk, where m ≤ k.
Then this element x is counted exactly once on the left-hand side of (1). It therefore suffices to show
that this element x is counted also exactly once on the right-hand side of (1). By relabelling the sets
S1, . . . , Sk if necessary, we may assume, without loss of generality, that x ∈ Si if i = 1, . . . , m and x �∈ Si

if i = m + 1, . . . , k. Then

x ∈ Si1 ∩ . . . ∩ Sij if and only if ij ≤ m.

Note now that the number of distinct integer j-tuples (i1, . . . , ij) satisfying 1 ≤ i1 < . . . < ij ≤ m is
given by the binomial coefficient (

m

j

)
.

It follows that the number of times the element x is counted on the right-hand side of (1) is given by

m∑
j=1

(−1)j+1

(
m

j

)
= 1 +

m∑
j=0

(−1)j+1

(
m

j

)
= 1 −

m∑
j=0

(−1)j

(
m

j

)
= 1 − (1 − 1)m = 1,

in view of the Binomial theorem. ♣
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13.3. Two Further Examples

The Principle of inclusion-exclusion will be used in Chapter 15 to study the problem of determining
the number of solutions of certain linear equations. We therefore confine our illustrations here to two
examples.

Example 13.3.1. We wish to calculate the number of distinct natural numbers not exceeding 1000
which are multiples of 10, 15, 35 or 55. Let

S1 = {1 ≤ n ≤ 1000 : n is a multiple of 10}, S2 = {1 ≤ n ≤ 1000 : n is a multiple of 15},
S3 = {1 ≤ n ≤ 1000 : n is a multiple of 35}, S4 = {1 ≤ n ≤ 1000 : n is a multiple of 55},

so that

|S1| =
[
1000
10

]
= 100, |S2| =

[
1000
15

]
= 66, |S3| =

[
1000
35

]
= 28, |S4| =

[
1000
55

]
= 18.

Next,

S1 ∩ S2 = {1 ≤ n ≤ 1000 : n is a multiple of 10 and 15} = {1 ≤ n ≤ 1000 : n is a multiple of 30},
S1 ∩ S3 = {1 ≤ n ≤ 1000 : n is a multiple of 10 and 35} = {1 ≤ n ≤ 1000 : n is a multiple of 70},
S1 ∩ S4 = {1 ≤ n ≤ 1000 : n is a multiple of 10 and 55} = {1 ≤ n ≤ 1000 : n is a multiple of 110},
S2 ∩ S3 = {1 ≤ n ≤ 1000 : n is a multiple of 15 and 35} = {1 ≤ n ≤ 1000 : n is a multiple of 105},
S2 ∩ S4 = {1 ≤ n ≤ 1000 : n is a multiple of 15 and 55} = {1 ≤ n ≤ 1000 : n is a multiple of 165},
S3 ∩ S4 = {1 ≤ n ≤ 1000 : n is a multiple of 35 and 55} = {1 ≤ n ≤ 1000 : n is a multiple of 385},

so that

|S1 ∩ S2| =
[
1000
30

]
= 33, |S1 ∩ S3| =

[
1000
70

]
= 14, |S1 ∩ S4| =

[
1000
110

]
= 9,

|S2 ∩ S3| =
[
1000
105

]
= 9, |S2 ∩ S4| =

[
1000
165

]
= 6, |S3 ∩ S4| =

[
1000
385

]
= 2.

Next,

S1 ∩ S2 ∩ S3 = {1 ≤ n ≤ 1000 : n is a multiple of 10, 15 and 35}
= {1 ≤ n ≤ 1000 : n is a multiple of 210},

S1 ∩ S2 ∩ S4 = {1 ≤ n ≤ 1000 : n is a multiple of 10, 15 and 55}
= {1 ≤ n ≤ 1000 : n is a multiple of 330},

S1 ∩ S3 ∩ S4 = {1 ≤ n ≤ 1000 : n is a multiple of 10, 35 and 55}
= {1 ≤ n ≤ 1000 : n is a multiple of 770},

S2 ∩ S3 ∩ S4 = {1 ≤ n ≤ 1000 : n is a multiple of 15, 35 and 55}
= {1 ≤ n ≤ 1000 : n is a multiple of 1155},

so that

|S1 ∩ S2 ∩ S3| =
[
1000
210

]
= 4, |S1 ∩ S2 ∩ S4| =

[
1000
330

]
= 3,

|S1 ∩ S3 ∩ S4| =
[
1000
770

]
= 1, |S2 ∩ S3 ∩ S4| =

[
1000
1155

]
= 0.

Finally,

S1 ∩ S2 ∩ S3 ∩ S4 = {1 ≤ n ≤ 1000 : n is a multiple of 10, 15, 35 and 55}
= {1 ≤ n ≤ 1000 : n is a multiple of 2310},
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so that

|S1 ∩ S2 ∩ S3 ∩ S4| =
[
1000
2310

]
= 0.

It follows that

|S1 ∪ S2 ∪ S3 ∪ S4| = (|S1| + |S2| + |S3| + |S4|)
− (|S1 ∩ S2| + |S1 ∩ S3| + |S1 ∩ S4| + |S2 ∩ S3| + |S2 ∩ S4| + |S3 ∩ S4|)
+ (|S1 ∩ S2 ∩ S3| + |S1 ∩ S2 ∩ S4| + |S1 ∩ S3 ∩ S4| + |S2 ∩ S3 ∩ S4|)
− (|S1 ∩ S2 ∩ S3 ∩ S4|)

= (100 + 66 + 28 + 18) − (33 + 14 + 9 + 9 + 6 + 2) + (4 + 3 + 1 + 0) − (0) = 147.

Example 13.3.2. Suppose that A and B are two non-empty finite sets with |A| = m and |B| = k,
where m > k. We wish to determine the number of functions of the form f : A → B which are not onto.
Suppose that B = {b1, . . . , bk}. For every i = 1, . . . , k, let

Si = {f : bi �∈ f(A)};

in other words, Si denotes the collection of functions f : A → B which leave out the value bi. Then we
are interested in calculating |S1 ∪ . . . ∪ Sk|. Observe that for every j = 1, . . . , k, if f ∈ Si1 ∩ . . . ∩ Sij

,
then f(x) ∈ B \ {bi1 , . . . , bij

}. It follows that for every x ∈ A, there are only (k− j) choices for the value
f(x). It follows from this observation that

|Si1 ∩ . . . ∩ Sij | = (k − j)m.

Combining this with (1), we conclude that

|S1 ∪ . . . ∪ Sk| =
k∑

j=1

(−1)j+1

(
k

j

)
(k − j)m.

It also follows that the number of functions of the form f : A → B that are onto is given by

km −
k∑

j=1

(−1)j+1

(
k

j

)
(k − j)m =

k∑
j=0

(−1)j

(
k

j

)
(k − j)m.

Problems for Chapter 13

1. Find the number of distinct positive integer multiples of 2, 3, 5, 7 or 11 not exceeding 3000.

2. A natural number greater than 1 and not exceeding 100 must be prime or divisible by 2, 3, 5 or 7.
a) Find the number primes not exceeding 100.
b) Find the number of natural numbers not exceeding 100 and which are either prime or even.

3. Consider the collection of permutations of the set {1, 2, 3, . . . , 8}; in other words, the collection of
one-to-one and onto functions f : {1, 2, 3, . . . , 8} → {1, 2, 3, . . . , 8}.
a) How many of these functions satisfy f(n) = n for every even n?
b) How many of these functions satisfy f(n) = n for every even n and f(n) �= n for every odd n?
c) How many of these functions satisfy f(n) = n for precisely 3 out of the 8 values of n?
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4. For every n ∈ N, let φ(n) denote the number of integers in the set {1, 2, 3, . . . , n} which are coprime
to n. Use the Principle of inclusion-exclusion to prove that

φ(n) = n
∏
p

(
1 − 1

p

)
,

where the product is over all prime divisors p of n.

− ∗ − ∗ − ∗ − ∗ − ∗ −


