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3.3 Inference

3.3.1 Direct Inference (Modus Ponens) and Proofs

We concluded our last section with a proof that the sum of even numbers is even. There were
several crucial ingredients in that proof. One consisted of introducing symbols for members of
the universe of even numbers. How did we know to start the proof that way? As usual, there is
more than one possible answer to this question. In this case, our intuition was probably based
on thinking about what an even number is, and realizing that the definition itself is essentiallly
symbolic. (You may argue that an even number is just twice another number, and you would
be right. Apparently there are no symbols are in that definition. But they really are there; they
are the phrases “even number” and “another number.” Since we all know algebra is easier with
symbolic variables rather than words, we should recognize that it makes sense to use algebraic
notation.)

We then used the definition of even numbers, and our previous parenthetic comment suggests
that it was natural for us to use the definition symbolically. The definition tells us that if m is an
even number, then there exists another integer i such that m = 2i. We combined this with the
assumption that m is even to conclude that m = 2i. This is an example of using the principle
of direct inference (called modus ponens in Latin, though we won’t worry about Latin names in
this course.) The principle says that from p and p ⇒ q we may conclude q. This principle is a
cornerstone of logical arguments. If you think about the truth table for p ⇒ q, you can view this
rule as describing one row of this truth table.

We then used algebra to show that if m = 2i and n = 2j then there exists a k such that
m + n = 2k (our k was i + j). Then we concluded that m + n = 2k. Next we used the definition
of even number again. We finally reached a grand conclusion that for all pairs of even numbers,
their sum is even. Here is another rule of inference, one of the more difficult to describe. We
introduced the variables m and n. We used only well-known consequences of the fact that they
were in the universe of even numbers in our proof. Thus we felt justified in asserting that what
we concluded about m and n is true for any pair of integers. We might say that we were treating
m and n as generic members of our universe. Thus our rule of inference says that if we can
prove a statement for a generic member of our universe, then we can conclude it is true for every
member of our universe. Perhaps the reason this rule is hard to put into words is that it is not
simply a description of a truth table, but is a principle that we use in order to prove universally
quantified statements.

3.3.2 Rules of inference

We have seen the ingredients of a typical proof. What do we mean by a proof in general? A
proof of a statement is a convincing argument that the statement is true. A proof consists of a
sequence of statements, each of which is either a hypothesis (to be described in more detail in
our description of rules of inference below), a generally accepted fact, or the result of one of the
following rules of inference for compound statements. (Note that the first four rules below are in
effect a description of the truth tables for compound statements.) Rule 5 says what we must do
in order to write a proof of an ”if and only if” statement. Rule 6 (exemplified in our discussion
above) is the principle of logical reasoning we called direct inference. Rule 7 is the transitive law,
one we could derive by truth table analysis. Rule 8 may be regarded as another description of
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the truth table of p ⇒ q. Rules 9 and 10 specify what we mean by the truth of a quantified
statement.

1 From an example x that does not satify p(x), we may conclude ¬p(x)

2 From p(x) and q(x), we may conclude p(x) ∧ q(x)

3 From either p(x) or q(x), we may conclude p(x) ∨ q(x)

4 From either q(x) or ¬p(x) we may conclude p(x) ⇒ q(x).

5 From p(x) ⇒ q(x) and q(x) ⇒ p(x) we may conclude p(x) ⇔ q(x).

6 From p(x) and p(x) ⇒ q(x) we may conclude q(x)

7 From p(x) ⇒ q(x) and q(x) ⇒ r(x) we may conclude p(x) ⇒ r(x).

8 If we can derive q(x) from the hypothesis that x satisfies p(x), then we may conclude
p(x) ⇒ q(x)

9 If we can derive p(x) from the hypothesis that x is a (generic) member of our universe, we
may conclude ∀x p(x).

10 From an example of an x satisfying p(x) we may conclude ∃x p(x).

A number of our rules of inference are redundant. However they are useful. For example, we
could rewrite our proof that the sum of even numbers is even as follows.

“Let m and n be integers. If m is even, then there is a k with m = 2k. If n is even,
then there is a j with n = 2j. Thus if m is even and n is even, there is a k and j such
that m + n = 2k + 2j = 2(k + j). Thus if m is even and m is even, there is an integer
h = k + j such that m + n = 2h. Thus if m is even and n is even, m + n is even.”

This kind of argument could always be used to circumvent the use of rule 8, so it is not
required as a rule of inference, but because it permits us to avoid such unnecessarily complicated
“nonsense” in our proofs, we are including it.

3.3-1 Prove that if m is even, then m2 is even.

3.3-2 Show that “p implies q” is equivalent to “¬q implies ¬p.”

3.3-3 Is “p implies q” equivalent to “q implies p?”

In Exercise 3.3-1 we can mimic the proof that the sum of even numbers is even. We let m
be an even number, use the fact that it is 2i for some i, and observe that m2 = (2i)2 = 2 · (2i2),
which lets us conclude that m2 is even.



64 CHAPTER 3. REFLECTIONS ON LOGIC AND PROOF

3.3.3 Contrapositive rule of inference.

In Exercise 3.3-2 we saw that if we know that ¬q ⇒ ¬p, then we can conclude that p ⇒ q. To
see what that is good for, consider the following example.

Prove that if n is a positive integer with n2 > 100, then n > 10.

Proof: Suppose n is not greater than 10. Then since n is between 1 and 10, n2 is between 1
and 100. Thus n2 is not greater than 100. Therefore, if n2 > 100, n must be greater than 10.

We could give an intuitive explanation of the reasoning (and doing so would be a good
exercise), but we don’t need to because we can see we are just using the result of Exercise 2.

We adopt the result of Exercise 2 as a rule of inference, called the contrapositive rule of
inference.

11 From ¬q ⇒ ¬p we may conclude p ⇒ q.

3.3.4 Proof by contradiction

Proof by contrapositive inference is an example of what we call indirect inference. We have
actually seen another example indirect inference, the method of proof by contradiction. Recall
that in our proof of Euclid’s Division Theorem we began by assuming that the theorem was false.
We then chose among the pairs of integers m,n such that m 	= qn + r with 0 ≤ r < n a pair
with the smallest possible m. We then made some computations by which we proved that indeed
there is an r with 0 ≤ r < n such that m = qn + r. Thus we started out by assuming the
theorem was false, and from that assumption we drew drew two conclusions that contradicted
each other. Since all our reasoning, except for the assumption that the theorem was false, used
accepted rules of inference, the only source of that contradiction was our assumption. Thus our
assumption had to be incorrect. This leads us to another rule of inference, called the principle
of proof by contradiction or the principle of reduction to absurdity.

12 If from assuming p and ¬q, we can derive both r and ¬r for some statement r, then we
may conclude p ⇒ q.

There can be many variations of proof by contradiction. For example, we may assume p is
true and q is false, and from this derive the contradiction that p is false, as in the following
example.

Prove that if x2 + x − 2 = 0, then x 	= 0.

Proof: Suppose that x2 + x − 2 = 0. Assume that x = 0. Then x2 + x − 2 =
0 + 0 − 2 = −2. This contradicts x2 + x − 2 = 0. Thus (by the principle of proof by
contradiction), if x2 + x − 2 = 0, thne x 	= 0.

Here the statement q was identical to p, namely x2 + x − 2 = 0.

On the other hand, we may instead assume p is true and q is false, and derive a contradiction
of a known fact, as in the following example.
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Prove that if x2 + x − 2 = 0, then x 	= 0.

Proof: Suppose that x2 + x − 2 = 0. Assume that x = 0. Then x2 + x − 2 =
0 + 0 − 2 = −2. Thus 0 = −2, a contradiction. Thus (by the principle of proof by
contradiction), if x2 + x − 2 = 0, then x 	= 0.

Here the statement q is the known fact that 0 	= −2.

Sometimes the statement q that appears in the principle of proof by contradiction is simply
a statement that arises naturally as we are trying to construct our proof, as in the following
example.

Prove that if x2 + x − 2 = 0, then x 	= 0.

Proof: Suppose that x2 + x − 2 = 0. Then x2 + x = 2. Assume that x = 0. Then
x2 + x = 0 + 0 = 0. But this is a contradiction. Thus (by the principle of proof by
contradiction), if x2 + x − 2 = 0, the x 	= 0.

Here the statement q is “x2 + x = 2.”

Finally, if proof by contradiction seems to you not to be much different from proof by con-
traposition, you are right, as the example that follows shows.

Prove that if x2 + x − 2 = 0, then x 	= 0.

Proof: Assume that x = 0. Then x2+x−2 = 0+0−2 = −2, so that x2+x−2 	= 0.
Thus (by the principle of proof by contraposition), if x2 + x − 2 = 0, then x 	= 0.

The last four examples illustrate the rich possibilities that indirect proof provides us. Of course
they also illustrate why indirect proof can be confusing. There is no set formula that we use
in writing a proof by contradiction, so there is no rule we can memorize in order to formulate
indirect proofs. Instead, we have to ask ourselves whether assuming the opposite of what we are
trying to prove gives us insight into why the assumption makes no sense. If it does, we have the
basis of an indirect proof, and the way in which we choose to write it is a matter of personal
choice.

3.3-4 Prove that if n is a positive integer such that n2 < 9, then n < 3.

3.3-5 Prove that
√

5 is not rational.

Exercises

E3.3-1 Write down the converse and contrapositive of each of these statements.

1. If the hose is 60 feet long, then the hose will reach the tomatoes.

2. George goes for a walk only if Mary goes for a walk.

3. Pamela recites a poem if Andre asks for poem.
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E3.3-2 Construct a proof that if n is even and n is odd, the m + n is odd.

E3.3-3 Construct a proof that if m2 is even, then m is even.

E3.3-4 Prove or disprove the following statement. “For every positive integer n, if n is
prime, then 12 and n3 − n2 + n have a common factor.”

E3.3-5 Prove or disprove the following statement. “For all integers b, c, and d, if x is a
rational number such that x2 + bx + c = d, then x is an integer.” (Hints: Are all the
quantifiers given explicitly? It is ok to use the quadratic formula.)

E3.3-6 Prove that there is no largest prime number.


