Permutations

Definition: A permutation of a set of distinct objects is an ordered arrangement of these objects.

Example: A permutation of objects

Object	2	is in position	1.
"	1	"	2.
"	4	"	3.
"	3	"	4.

Example: A permutation of a string

a	b	c	d	e	f
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
(1)	(2)	(3)	(4)	(5)	(6)
\vdots	\vdots	\vdots	\vdots	\vdots	\vdots
e	f	b	c	a	d

"efbcad" is a permutation of "abcdef". Order is part of a permutation.

Example: Another permutation

$$
\begin{array}{lllll}
a_{1} & a_{2} & a_{3} & a_{4} & a_{5} \\
a_{3} & a_{4} & a_{1} & a_{5} & a_{2}
\end{array} \leftarrow \text { permutation }
$$

Definition: An r-permutation is an ordered arrangement of r elements in the set.

Example: Let $S=\{1,2,3,4\}$

- $(4,2,3,1)$ is a permutation of S
- $(3,1,2)$ is a 3 -permutation of S
- $(4,3)$ is a 2-permutation of S

Notation: $P(n, r)$ is the number of r-permutations of a set of n elements.
What is the value of $P(n, r)$?

- There are r positions to be filled.

\sqcup	\sqcup	\sqcup	\cdots	\sqcup
1	2	3		r

- The first position can be filled in n ways.
- The second position can be filled in $n-1$ ways.
- The i th position can be filled in $n-i+1$ ways.

$$
P(n, r)=\prod_{i=1}^{r}(n-i+1)=n \cdot(n-1) \cdots(n-r+1)=\frac{n!}{(n-r)!}
$$

Example: There are 6 contestants in an event. There are 3 prizes: a car, a TV, and a microwave. What is the number of distinct ways of awarding these prizes?

Number of such ways $=P(6,3)=6 \cdot 5 \cdot 4=120$.

Example: A salesperson has to visit 10 different cities. What is the number of possible orders for visiting these cities if they can be visited in any possible order?

$$
\begin{array}{cccccc}
\text { Ten positions: } & \sqcup & \sqcup & \sqcup & \cdots & \sqcup \\
& 1 & 2 & 3 & \cdots & 10
\end{array}
$$

If you fill in the positions from 1 to 10 , then the i th position may be filled in $10-i+1$ ways, since the remaining cities at any step may be visited in any order.
$\#$ of possible orders $=10 \cdot 9 \cdot 8 \cdots 1=10$!

Combinations

Definition: An r-combination of elements of a set is an unordered selection of r elements from the set. An r-combination is just a subset of size r.

Example: Let $S=\{1,2,3,4,5\}$

- $\{1,3\}$ is a 2 -combination (a subset of size 2)
- $\{1,3,4,5\}$ is a 4 -combination

Notation: $C(n, r)$ is the number of r-combinations of a set of size n. I.e. the number of ways of choosing r objects out of n.

What is the value of $C(n, r)$?

- An r-permutation is obtained by first selecting a subset of r objects, and then permuting these r objects (i.e. placing an order on them).
- $P(n, r)=C(n, r) \cdot P(r, r)$, where $P(r, r)$ is the number of ways of ordering r objects.
- $C(n, r)=\frac{P(n, r)}{P(r, r)}=\frac{n!}{(n-r)!} / \frac{r!}{1!}=\frac{n!}{(n-r)!r!}$

$$
C(n, r)=C(n, n-r)
$$

Notation: $C(n, r)$ is also denoted as $\binom{n}{r}$.

$$
\binom{n}{r}=\binom{n}{n-r}
$$

The two previous boxed equations are true, because selecting r objects is equivalent to not selecting $n-r$ of them.

$$
\begin{aligned}
C(n, r) & =\frac{n!}{(n-r)!r!} \\
& =\frac{n!}{[n-(n-r)]!(n-r)!} \\
& =C(n, n-r)
\end{aligned}
$$

Example: There are 6 students in a class. In how many ways can we pick a squash team of 3 players?

$$
\# \text { of ways }=\binom{6}{3}=\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(3 \cdot 2 \cdot 1)(3 \cdot 2 \cdot 1)}=20
$$

Example: A bin contains 10 red objects and 6 blue objects.
(i) What is the number of ways of picking 3 blue and 4 red objects?
(ii) What is the number of ways of picking the same number of objects of each color?

Part (i):
3 blue objects may be picked in $\binom{6}{3}$ ways.
4 red objects can be chosen in $\binom{10}{4}$ ways.
So 3 blue objects and 4 red objects may be picked in $\binom{6}{3} \cdot\binom{10}{4}$ ways.
Part (ii):
We can pick i objects of each color, where $i=0,1, \ldots 6$ (Six is the maximum, since there are only six blue balls).

$$
\begin{aligned}
& \text { \# of ways of picking } i \text { blue and } i \text { red objects }=\binom{6}{i} \cdot\binom{10}{i} \\
& \begin{aligned}
\text { Total \# of ways } & =\binom{6}{6} \cdot\binom{10}{6}+\binom{6}{5} \cdot\binom{10}{5}+\cdots+\binom{6}{0} \cdot\binom{10}{0} \\
& =\sum_{i=0}^{6}\left[\binom{6}{i} \cdot\binom{10}{i}\right]
\end{aligned}
\end{aligned}
$$

$\underline{\text { Pascal's Identity }}$

$$
C(n+1, k)=C(n, k-1)+C(n, k)
$$

Proof idea: Let S be a set containing $n+1$ elements. Let a be some element in S, and let $T=S \backslash\{a\}$ (i.e. the set of all elements in S other than a). So we have $S=T \cup\{a\}$ and $|T|=n$. Then, a k-subset of S may be obtained by:
(i) picking a to be in the subset, and then picking $k-1$ more elements from T. There are $C(n, k-1)$ subsets of this type.
(ii) picking all k elements from T. There are $C(n, k)$ subsets of this type.

$\underline{\text { Vandermonde's Identity }}$

$$
C(m+n, r)=\sum_{k=0}^{r}[C(m, k) \cdot C(n, r-k)]
$$

Proof idea: Let S be a set of m elements, and let T be a set of n elements such that $S \cap T=\emptyset$ (the empty set).

- $C(m+n, r)=\#$ of r-subsets of $S \cup T$
- An r-subset of $S \cup T$ is obtained by picking k elements from S and the remaining $r-k$ elements from T, where k could be $0,1, \ldots, r$. For a given k, the number of such ways is $C(m, k) \cdot C(n, r-k)$.
- Summing over k gives the identity.

Binomial Theorem

$$
(a+b)^{n}=\sum_{i=0}^{n}\left[C(n, i) \cdot a^{i} b^{n-1}\right]
$$

Proof idea: What is the coefficient of $a^{i} b^{n-i}$?

$$
n \text { terms }\left\{\begin{array}{cccc}
(a+b) & (a+b) & \cdots & (a+b) \\
1 & 2 & \cdots & n
\end{array}\right.
$$

The $a^{i} b^{n-i}$ term is obtained by picking a from i terms and using b from the remaining $n-i$ terms. There are $C(n, i)$ ways to do that.

Example: What is the coefficient of $a^{2} b$ in $(a+b)^{3}$?
There are three ways to choose a from two terms and b from one:

$$
\begin{aligned}
& \binom{3}{2}=3 \text { ways }\left\{\begin{array}{ccc}
(a+b) & (a+b) & (a+b) \\
a & a & b \\
a & b & a \\
b & a & a
\end{array}\right. \\
& (a+b)(a+b)(a+b)=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}
\end{aligned}
$$

