MATHEMATICAL INDUCTION

Mathematical induction is a method used to prove stated results, equations or identities whenever it is very difficult to proceed by normal methods.

The procedure is quite simple but for the mathematical manipulations. Given a result to prove, we proceed as follows:

- 1. We show that the result is true for n = 1 and n = 2.
- 2. We assume that the result is true for n = k.
- 3. We prove that it is true for n = k + 1.

The logic behind this method is that, if it true for n = k and proven true for n = k + 1, then it should be true for all integral values of n.

We shall now take some examples to illustrate this method.

EXAMPLE 1

Prove that
$$\sum_{r=1}^{n} r(r+3) = \frac{n(n+1)(n+5)}{3}$$
.

SOLUTION

When
$$n = 1$$
, L.H.S = $\sum_{r=1}^{1} r(r+3) = (1)(4) = 4$; R.H.S = $\frac{(1)(2)(6)}{3} = 4$.
When $n = 2$, L.H.S = $\sum_{r=1}^{2} r(r+3) = (1)(4) + (2)(5) = 14$; R.H.S = $\frac{(2)(3)(7)}{3} = 14$.

Assume that the result is true for n = k, that is,

$$\sum_{r=1}^{k} r(r+3) = \frac{k(k+1)(k+5)}{3}$$

To prove that it is true for n = k + 1,

$$\sum_{r=1}^{k+1} r(r+3) = \sum_{r=1}^{k} r(r+3) + (k+1)(k+4) = \frac{k(k+1)(k+5)}{3} + (k+1)(k+4)$$
$$= \frac{(k+1)}{3} [k(k+5) + 3(k+4)] = \frac{(k+1)}{3} (k^2 + 8k + 12)$$
$$= \frac{(k+1)(k+2)(k+6)}{3} = \frac{[k+1][(k+1)+1][(k+1)+5]}{3}.$$

EXAMPLE 2

If $n \in Z^+$, prove that $7^n(3n+1)-1$ is always divisible by 9.

SOLUTION

Let $T_n = 7^n (3n+1) - 1$; $T_1 = (7)(4) - 1 = 27$ is divisible by 9. $T_2 = (49)(7) - 1 = 342$ is divisible by 9.

Assume that the result is true for n = k, that is, $T_k = 7^k (3k+1) - 1$ is divisible by 9. To prove that the result is true for n = k + 1, that is, we have to prove that the difference between T_{k+1} and T_k is also divisible by 9 (think about it!).

Now,
$$T_{k+1} - T_k = [7^{k+1}(3k+4) - 1] - [7^k(3k+1) - 1] = 7^k(21k+28) - 7^k(3k+1)$$

= $7^k(18k+27) = 9[7^k(2k+3)]$

which is obviously divisible by 9.

EXAMPLE 3

If
$$y = xe^x$$
, prove that $\frac{d^n y}{dx^n} = (x+n) e^x$.

SOLUTION

$$\frac{dy}{dx} = xe^{x} + e^{x} = (x+1) e^{x} = \text{R.H.S when } n = 1.$$

$$\frac{d^{2}y}{dx^{2}} = \frac{d}{dx}(xe^{x} + e^{x}) = xe^{x} + e^{x} + e^{x} = (x+2) e^{x} = \text{R.H.S when } n = 2.$$

Assume that the result is true when n = k, that is, $\frac{d^k y}{dx^k} = (x+k) e^x$. $\frac{d^{k+1} y}{dx^{k+1}} = \frac{d}{dx} \left(\frac{d^k y}{dx^k} \right) = (x+k) e^x + e^x = [x + (k+1) e^x].$

EXAMPLE 4

Given that $n \ge 1$, show that $5(4n^2 + 1) > 4(n+1)^2 + 1$. Hence, or otherwise, prove by induction that $5^n \ge 4n^2 + 1$.

SOLUTION

The first part can easily be proved. We start with the result to be proved and, by sending all the terms on the L.H.S., we end up with a quadratic inequality in *n*. Solving for the range of n, we find that $n \ge \frac{2}{3}$ and this implies that the inequality is also valid for $n \ge 1$.

To prove that $5^n \ge 4n^2 + 1$; When n = 1, L.H.S = 5 and R.H.S = 5. When n = 2, L.H.S = 25 and R.H.S = 17.

Assume that $5^k \ge 4k^2 + 1$; to prove the case for n = k + 1, multiply by 5 on both sides, that is, $5(5^k) \ge 5(4k^2 + 1) \Rightarrow 5^{k+1} \ge 5(4k^2 + 1) > 4(k+1)^2 + 1$ (from the above result). Therefore, $5^{k+1} > 4(k+1)^2 + 1$.

EXAMPLE 5

Prove that $(\cos q + i \sin q)^n = \cos nq + i \sin nq$.

SOLUTION

When n = 1, L.H.S = $\cos q + i \sin q = R$.H.S When n = 2, L.H.S = $(\cos q + i \sin q)^2 = \cos^2 q + 2i \cos q \sin q + \sin^2 q$ $= (\cos^2 q + \sin^2 q) + i(2 \sin q \cos q)$ $= \cos 2q + i \sin 2q = R$.H.S Assume that the result is true for n = k, that is, $(\cos q + i \sin q)^k = \cos kq + i \sin kq$; $(\cos q + i \sin q)^{k+1} = (\cos q + i \sin q)^k (\cos q + i \sin q)$ $= (\cos nq + i \sin nq)(\cos q + i \sin q)$ $= (\cos nq \cos q - \sin nq \sin q) + i(\cos nq \sin q + \sin nq \cos q)$

 $=\cos(n\boldsymbol{q}+\boldsymbol{q})+i\sin(n\boldsymbol{q}+\boldsymbol{q})=\cos(n+1)\boldsymbol{q}+i\sin(n+1)\boldsymbol{q}$

EXAMPLE 6

Prove by induction that

 $\cos a + \cos(a+2h) + \cos(a+4h) + \dots + \cos[a+(2n-2)h] = \cos[a+(n-1)h]\frac{\sin nh}{\sin h}$

SOLUTION

When n = 1, L.H.S = cos a; R.H.S = cos
$$a \frac{\sin h}{\sin h} = \cos a$$
.
When n = 2, L.H.S = cos $a + \cos (a + 2h)$;
R.H.S = cos $(a + h) \frac{\sin 2h}{\sin h} = \cos(a + h) \frac{2\sin h \cos h}{\sin h} = 2\cos(a + h)\cos h$
= cos $a + \cos (a + 2h)$.

Assume that the result is true for n = k, that is,

$$\cos a + \cos(a+2h) + \cos(a+4h) + \dots + \cos[a+(2k-2)h] = \cos[a+(k-1)h]\frac{\sin kh}{\sin h};$$

For n = k + 1,

L.H.S = $\cos a + \cos(a + 2h) + \cos(a + 4h) + \dots + \cos[a + (2k - 2)h] + \cos(a + 2kh)$

$$= \cos[a + (k-1)h]\frac{\sin kh}{\sin h} + \cos(a+2kh)$$
$$= \frac{\cos[(a+kh) - h]\sin kh + \cos[(a+kh) + kh]\sin h}{\sin h}$$

 $=\frac{\left[\cos(a+kh)\cos h+\sin(a+kh)\sin h\right]\sin kh+\left[\cos(a+kh)\cos kh-\sin(a+kh)\sin kh\right]\sin h}{\sin h}$

$$=\frac{\cos(a+kh)\cos h\sin kh+\cos(a+kh)\cos kh\sin h}{\sin h}$$

 $=\frac{\cos(a+kh)}{\sin h}\sin[(k+1)h].$