MATHEMATICAL INDUCTION

Mathematical induction is a method used to prove stated results, equations or identities whenever it is very difficult to proceed by normal methods.
The procedure is quite simple but for the mathematical manipulations. Given a result to prove, we proceed as follows:

1. We show that the result is true for $n=1$ and $n=2$.
2. We assume that the result is true for $n=k$.
3. We prove that it is true for $n=k+1$.

The logic behind this method is that, if it true for $n=k$ and proven true for $n=k+1$, then it should be true for all integral values of n.
We shall now take some examples to illustrate this method.

EXAMPLE 1

Prove that $\sum_{r=1}^{n} r(r+3)=\frac{n(n+1)(n+5)}{3}$.

SOLUTION

When $n=1$, L.H.S $=\sum_{r=1}^{1} r(r+3)=(1)(4)=4 ;$ R.H.S $=\frac{(1)(2)(6)}{3}=4$.
When $n=2$, L.H.S $=\sum_{r=1}^{2} r(r+3)=(1)(4)+(2)(5)=14 ;$ R.H.S $=\frac{(2)(3)(7)}{3}=14 .$.
Assume that the result is true for $n=k$, that is,

$$
\sum_{r=1}^{k} r(r+3)=\frac{k(k+1)(k+5)}{3}
$$

To prove that it is true for $n=k+1$,

$$
\begin{aligned}
\sum_{r=1}^{k+1} r(r+3) & =\sum_{r=1}^{k} r(r+3)+(k+1)(k+4)=\frac{k(k+1)(k+5)}{3}+(k+1)(k+4) \\
& =\frac{(k+1)}{3}[k(k+5)+3(k+4)]=\frac{(k+1)}{3}\left(k^{2}+8 k+12\right) \\
& =\frac{(k+1)(k+2)(k+6)}{3}=\frac{[k+1][(k+1)+1][(k+1)+5]}{3} .
\end{aligned}
$$

EXAMPLE 2

If $n \in Z^{+}$, prove that $7^{n}(3 n+1)-1$ is always divisible by 9 .

SOLUTION

Let $T_{n}=7^{n}(3 n+1)-1$;
$T_{1}=(7)(4)-1=27$ is divisible by 9 .
$T_{2}=(49)(7)-1=342$ is divisible by 9 .

Assume that the result is true for $n=k$, that is, $T_{k}=7^{k}(3 k+1)-1$ is divisible by 9 .
To prove that the result is true for $n=k+1$, that is, we have to prove that the difference between T_{k+1} and T_{k} is also divisible by 9 (think about it!).

Now, $T_{k+1}-T_{k}=\left[7^{k+1}(3 k+4)-1\right]-\left[7^{k}(3 k+1)-1\right]=7^{k}(21 k+28)-7^{k}(3 k+1)$

$$
=7^{k}(18 k+27)=9\left[7^{k}(2 k+3)\right]
$$

which is obviously divisible by 9 .

EXAMPLE 3

If $y=x e^{x}$, prove that $\frac{d^{n} y}{d x^{n}}=(x+n) e^{x}$.

SOLUTION

$\frac{d y}{d x}=x e^{x}+e^{x}=(x+1) e^{x}=$ R.H.S when $n=1$.
$\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(x e^{x}+e^{x}\right)=x e^{x}+e^{x}+e^{x}=(x+2) e^{x}=$ R.H.S when $n=2$.
Assume that the result is true when $n=k$, that is, $\frac{d^{k} y}{d x^{k}}=(x+k) e^{x}$.
$\frac{d^{k+1} y}{d x^{k+1}}=\frac{d}{d x}\left(\frac{d^{k} y}{d x^{k}}\right)=(x+k) e^{x}+e^{x}=\left[x+(k+1) e^{x}\right]$.

EXAMPLE 4

Given that $n \geq 1$, show that $5\left(4 n^{2}+1\right)>4(n+1)^{2}+1$.
Hence, or otherwise, prove by induction that $5^{n} \geq 4 n^{2}+1$.

SOLUTION

The first part can easily be proved. We start with the result to be proved and, by sending all the terms on the L.H.S., we end up with a quadratic inequality in n. Solving for the range of n, we find that $n \geq \frac{2}{3}$ and this implies that the inequality is also valid for $n \geq 1$.

To prove that $5^{n} \geq 4 n^{2}+1$;
When $n=1$, L.H.S $=5$ and R.H.S $=5$.
When $n=2$, L.H.S $=25$ and R.H.S $=17$.

Assume that $5^{k} \geq 4 k^{2}+1$; to prove the case for $n=k+1$, multiply by 5 on both sides, that is, $5\left(5^{k}\right) \geq 5\left(4 k^{2}+1\right) \Rightarrow 5^{k+1} \geq 5\left(4 k^{2}+1\right)>4(k+1)^{2}+1$ (from the above result).
Therefore, $5^{k+1}>4(k+1)^{2}+1$.

EXAMPLE 5

Prove that $(\cos \theta+i \sin \theta)^{n}=\cos n \theta+i \sin n \theta$.

SOLUTION

When $n=1$, L.H.S $=\cos \theta+i \sin \theta=$ R.H.S
When $n=2$, L.H.S $=(\cos \theta+i \sin \theta)^{2}=\cos ^{2} \theta+2 i \cos \theta \sin \theta+\sin ^{2} \theta$

$$
\begin{aligned}
& =\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+i(2 \sin \theta \cos \theta) \\
& =\cos 2 \theta+i \sin 2 \theta=\text { R.H.S }
\end{aligned}
$$

Assume that the result is true for $n=k$, that is, $(\cos \theta+i \sin \theta)^{k}=\cos k \theta+i \sin k \theta$;

$$
\begin{aligned}
(\cos \theta+i \sin \theta)^{k+1} & =(\cos \theta+i \sin \theta)^{k}(\cos \theta+i \sin \theta) \\
& =(\cos n \theta+i \sin n \theta)(\cos \theta+i \sin \theta) \\
& =(\cos n \theta \cos \theta-\sin n \theta \sin \theta)+i(\cos n \theta \sin \theta+\sin n \theta \cos \theta) \\
& =\cos (n \theta+\theta)+i \sin (n \theta+\theta)=\cos (n+1) \theta+i \sin (n+1) \theta
\end{aligned}
$$

EXAMPLE 6

Prove by induction that

$$
\cos a+\cos (a+2 h)+\cos (a+4 h)+\ldots \ldots .+\cos [a+(2 n-2) h]=\cos [a+(n-1) h] \frac{\sin n h}{\sin h}
$$

SOLUTION

When $\mathrm{n}=1$, L.H.S $=\cos a ;$ R.H.S $=\cos a \frac{\sin h}{\sin h}=\cos a$.
When $\mathrm{n}=2$, L.H.S $=\cos a+\cos (a+2 h)$;

$$
\begin{aligned}
\text { R.H.S } & =\cos (a+h) \frac{\sin 2 h}{\sin h}=\cos (a+h) \frac{2 \sin h \cos h}{\sin h}=2 \cos (a+h) \cos h \\
& =\cos a+\cos (a+2 h)
\end{aligned}
$$

Assume that the result is true for $n=k$, that is,

$$
\cos a+\cos (a+2 h)+\cos (a+4 h)+\ldots \ldots . .+\cos [a+(2 k-2) h]=\cos [a+(k-1) h] \frac{\sin k h}{\sin h}
$$

For $n=k+1$,

$$
\text { L.H.S }=\cos a+\cos (a+2 h)+\cos (a+4 h)+\ldots \ldots . .+\cos [a+(2 k-2) h]+\cos (a+2 k h)
$$

$$
\begin{aligned}
& =\cos [a+(k-1) h] \frac{\sin k h}{\sin h}+\cos (a+2 k h) \\
& =\frac{\cos [(a+k h)-h] \sin k h+\cos [(a+k h)+k h] \sin h}{\sin h}
\end{aligned}
$$

$=\frac{[\cos (a+k h) \cos h+\sin (a+k h) \sin h] \sin k h+[\cos (a+k h) \cos k h-\sin (a+k h) \sin k h] \sin h}{\sin h}$
$=\frac{\cos (a+k h) \cos h \sin k h+\cos (a+k h) \cos k h \sin h}{\sin h}$
$=\frac{\cos (a+k h)}{\sin h} \sin [(k+1) h]$.

