
MATHEMATICAL INDUCTION 
 
Mathematical induction is a method used to prove stated results, equations or identities 
whenever it is very difficult to proceed by normal methods. 
The procedure is quite simple but for the mathematical manipulations. Given a result to 
prove, we proceed as follows: 
 
1. We show that the result is true for n = 1 and n = 2. 
2. We assume that the result is true for n = k. 
3. We prove that it is true for n = k + 1. 
 
The logic behind this method is that, if it true for n = k and proven true for n = k + 1, then 
it should be true for all integral values of n. 
We shall now take some examples to illustrate this method. 
 
 
EXAMPLE 1 
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SOLUTION 
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Assume that the result is true for n = k, that is, 
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 To prove that it is true for n = k + 1,  
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EXAMPLE 2 
 
If +∈ Zn , prove that 1)13(7 −+nn  is always divisible by 9. 
 
SOLUTION 
 
Let =nT 1)13(7 −+nn ; 

 =1T 271)4)(7( =−  is divisible by 9. 

 =2T 3421)7)(49( =− is divisible by 9. 
 
Assume that the result is true for n = k, that is, =kT 1)13(7 −+kk  is divisible by 9. 

To prove that the result is true for n = k + 1, that is, we have to prove that the difference 
between 1+kT  and kT  is also divisible by 9 (think about it!). 
 
Now, )13(7)2821(7]1)13(7[]1)43(7[ 1

1 +−+=−+−−+=− +
+ kkkkTT kkkk

kk  

                         = )]32(7[9)2718(7 +=+ kk kk  
which is obviously divisible by 9. 
 
 
 
EXAMPLE 3 
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SOLUTION 
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Assume that the result is true when n = k, that is, )( kx
dx

yd
k

k

+= xe . 

)(
1

1

kx
dx

yd

dx

d

dx

yd
k

k

k

k

+=







=+

+
xe + xe = [x + (k + 1) xe ]. 

 
 
 
 
 



 3

 
EXAMPLE 4 
 
Given that 1≥n , show that 1)1(4)14(5 22 ++>+ nn . 

Hence, or otherwise, prove by induction that 145 2 +≥ nn . 
 
 
SOLUTION 
 
The first part can easily be proved. We start with the result to be proved and, by sending 
all the terms on the L.H.S., we end up with a quadratic inequality in n. Solving for the 
range of n, we find that 3

2≥n  and this implies that the inequality is also valid for 1≥n . 
 
To prove that 145 2 +≥ nn ; 
When n = 1, L.H.S = 5 and R.H.S = 5. 
When n = 2, L.H.S = 25 and R.H.S = 17. 
 
Assume that 145 2 +≥ kk ; to prove the case for n = k + 1, multiply by 5 on both sides, 
that is, 1)1(4)14(55)14(5)5(5 2212 ++>+≥⇒+≥ + kkk kk  (from the above result). 

Therefore, .1)1(45 21 ++>+ kk  
 
EXAMPLE 5 
 
Prove that θθθθ nini n sincos)sin(cos +=+ . 
 
SOLUTION 
 
When n = 1, L.H.S = θθ sincos i+ = R.H.S 
When n = 2, L.H.S = θθθθθθ 222 sinsincos2cos)sin(cos ++=+ ii  

         = )cossin2()sin(cos 22 θθθθ i++  
       = θθ 2sin2cos i+  = R.H.S 
Assume that the result is true for n = k, that is, θθθθ kiki k sincos)sin(cos +=+ ; 

)sin(cos)sin(cos)sin(cos 1 θθθθθθ iii kk ++=+ +  
        = )sin)(cossin(cos θθθθ inin ++  
        = )cossinsin(cos)sinsincos(cos θθθθθθθθ nninn ++−  
        = θθθθθθ )1sin()1cos()sin()cos( +++=+++ ninnin   
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EXAMPLE 6 
 
Prove by induction that 
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SOLUTION 
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Assume that the result is true for n = k, that is, 
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For n = k + 1,   
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