On-Line Geometric Modeling Notes

CUBIC BEZIER CURVES

Kenneth 1. Joy
Visualization and Graphics Research Group
Department of Computer Science
University of California, Davis

Overview

The Bézier curve representation is one that is utilized most frequently in computer graphics and geomet-
ric modeling. The curve is defined geometrically, which means that the parameters have geometric meaning
— they are just points in three-dimensional space. It was developed by two competing European engineers
in the late 1960s to attempt to draw automotive components.

In these notes, we develop the cubic Bézier curve. This curve can be developed through a divide-and-
conquer approach similar to the quadratic curve However, in these notes, we will develop a parameterized

version of the curve which proceeds almost identically to the development for the quadratic Bézier curve

Defining The Cubic Bézier Curve
Given four control points, Py, P1, Py, P3, one can generate a curve P(¢), as we did in the case of the

quadratic Bézier curve, by
o et PV (1) = P, + (1 -)P
o letPV(t) = Py + (1—)Py

let P (t) = tP3+ (1—)P,y

et PP) = PP + (1 - PP ()

et PP) = P) + (1 - PP (1)

et P () = PP (1) + (1 —)PP (1)

o ng) (t) is defined to be P(t)

This construction is shown in the figure below

P,

notice that we did the same process as in the quadratic Bézier curve, but did one additional level. The

procedure, as in the quadratic case, produces a point on the curve and subdivides the curve by producing 2
new sets of 4 control points.

Simplifying the above construction, we have

P(t) = Py (1)
= PP (1) + (1 -)PP (1)
=t [tpg”(t) +(1— t)Pgl)(t)}
+ (1= PP + (1 -)PP ()]
= 2PN (1) +2t(1 —)P (1) + (1 — 2P 1)
=12 [tP3 + (1 — t)Po] + 2t(1 — t) [tPo + (1 — t)P4]
+ (1 =t)2[tPy + (1 —)Py
= t3P3 + 3t2(1 — t)Po + 3t(1 — t)*Py + (1 — t)°Py

which is the analytic form of the curve.

Summarizing the Development of the Curve

As in the quadratic case, we have developed two methods for generating points on the curve.

e The Geometric Method- Given the control points Py, P1, Py, P3, and a value ¢ € [0, 1], we can

generate the point P(¢) on the Bézier curve by

where

(4-1) (G-1) e
PP (1) = (I=)P; 2 () + Py (1) ifj > 0

P; otherwise

where

Bos(t) = (1—1t)°
By 3(t) = 3t(1 —t)?
Bas(t) = 3t3(1 — t)
Bss(t) =13

the Bernstein polynomials of degree three.

Properties of the Cubic Bezier Curve
The cubic Bézier curve has properties similar to that of the quadratic curve. These can be verified

directly from the equations above.

e P and P3 are on the curve.

e The curve is continuous, infinitely differentiable, and the second derivatives are continuous (automatic

for a polynomial curve).

o The tangent line to the curve at the point Py is the line PyP;. The tangent to the curve at the point
P3 is the line PoP3.

e The curve lies within the convex hull of its control points. This is because each successive PZ(»] Jisa
(G-1)
—1 .

convex combination of the points PEJ U and P,

e Both P and P, are on the curve only if the curve is linear.

Summary

The procedure for developing the cubic Bézier curve is nearly identical to that for the quadratic curve
— the primary difference is that we have four control points and must proceed one additional level in the
recursion to get a point on the curve. This procedure is extendable so that Bézier curves can be developed

for any number of control points.

All contents copyright (c) 1996, 1997, 1998, 1999, 2000
Computer Science Department, University of California, Davis
All rights reserved.

On-Line Geometric Modeling Notes

A MATRIX FORMULATION OF THE CUBIC B EZIER CURVE

Kenneth I. Joy
Visualization and Graphics Research Group
Department of Computer Science
University of California, Davis

Overview

A cubic Bézier curve has a useful representation in a matrix form. This is a non-standard representation
but extremely valuable if we can multiply matrices quickly. The matrix which we develop, when examined
closely, is uniquely defined by the cubic Bernstein polynomials. We can use this form to develop “subdivi-
sion matrices” that allow us to use matrix multiplication to generate differegtie® control polygons for
the cubic curve.

Developing the Matrix Equation
A cubic Bézier Curve can be written in a matrix form by expanding the analytic definition of the curve
into its Bernstein polynomial coefficients, and then writing these coefficients in a matrix form using the

polynomial power basis. That is,

(2
= (1—1)3Pg + 3t(1 — t)*Py + 3t3(1 —t)Py + t°P3

-Po-
P

z[(l—t)?’ 3t(1—t)2 3t2(1—1t) t3] '
Py

P

1 0 o0 o][P]

-3 3 0 0 P

z[l t 2 !
3 -6 3 0 P,

-1 3 =31 Ps

and so a cubic Bzier curve is can be written in a matrix form of

-Po-
P
[1tt2 B3| M !
Py
P3
where

1 0 0 o]
-3 0 0

M:
3 -6 3 0
-1 3 -3 1

The matrixM defines the blending functions for the cud?ét) — i.e. the cubic Bernstein polynomials. In
reality there are three equations here, one for each of thendz components oP ().

Utilizing equipment that is designed for fast< 4 matrix calculations, this formulation can be used to
quickly calculate points on the curve.

Subdivision Using the Matrix Form

Suppose we wish to generate the control polygon for the portion of the ®ftewheret ranges
betweer) and% — subdivide the curve at the poiht= % This can be done by defining a new cu@ét)
which is equal th(%). Clearly this new curve is a cubic polynomial, and traces out the desired portion of
P ast ranges betweelandl. We can calculate the &ier control polygon fo€ by using the matrix form
of the curveP.

Q) =P(3)
1 0 o0 ol[Py]
OO | IR
1 3 -3 1 P
10001 0o o ol[pPy]
0 2 0 0 -3 3 0 0 P
:[1tt2 t3] 2 X !
00 1o 3 -6 3 0 P,
00 0 % -1 3 =31 Ps
o
P
:[1 t t2 tg]MS[Ol] !
72 P2
P3

where the matri>S[0 1 is defined as

’2

1000
S =M" 05?0 M
2 00 %0
00 0 g |
(1000|100 0]|[1 0o o0 o]
|1t 300|034 00|33 0
|tz lofllooto 3 -6 3 0
(11 1 1][000 || -1 3 =3 1]
(100 0[] 1 0o 0 o]
|1 § 0 0[|-3 3 0 0
Lo 3 -6 3 0
L5 o3 os][-1 3 =3 1]
(10 0 0]
|z z 00
P31 0
13 3 1
L 8 8 8 8 |
SoQ(t) is a Bézier curve, with a control polygon given by
1000 [P | [P,]
300 P, | P+ 1P
1 310 Py | 1Py + 1Py + 1Py
[E 3t L] [primripireg

In the same way, we can obtain theéBer control polygon for the second half of the curve — the portion

wheret ranges betwee and1. If we call this new curveQ(t), then

1t
t)=P(=+ -
Q(t) =P(; +)
1 0 0 0 Py
-3 0 0 P,
— 1 l_|_i l_|_i2 l_{_ig}
TG G G|, s ol e
-1 3 -3 1 Ps
1L L1l 0 0 ol [P
1 1 3
1 3 _
00 7 % 3 6 3 0 P,
00 0 g -1 3 =31 P3
Po
P
:[lttQ t3}MSPl] !
27 Py
P3
where
[1 3 3 1]
8 8 8 8
o 1 1 1
511: 4 2 4
9 1 1
[2} 0055
0 0 0 1

obtaining a matrix that can be applied to the origina@zir control points to produceéRier control points

for the second half of the curve.

Generating a Sequence of 8zier Control Polygons.

Using matrix calculations similar to those above, we can generate an iterative scheme to generate a
sequence of points on the curve. To do this, we need one addifomeltrix. If we consider the portion
of the cubic curveP (t) wheret ranges betweehand2, We generate the &ier control points o€ (¢) by

reparameterization of the original curve — namely by replacimgt + 1 — to obtain

Q(t)=P(t+1)

1 0 0 0 P,
=1+ ¢+1)? @+ o R
3 -6 3 0 P,
-1 3 =31 P;
(11111 0o o o]]P]
‘ 01 2 3 -3 3 0 0 P,
:[1 t 2 t3}
00 1 3 3 -6 3 0 P,
0001 -1 3 -3 1 P;
b]
P
:[1 t 12 tﬂMS[LQ] '
Py
P3
where, after some calculatiof, 5 is given by
000 0 1]
0 0 -1 2
S =
0 1 —4 4
-1 6 —-12 8

Now, using a combination of[o 1] S[l 1] and Sy, o, we can produce &zier control polygons along
79 29
the curve similar to methods developed with divided differences. To see what | mean here, first notice that

S2500,4) = S[4.1]

This states that by applyin@[oé] to obtain a Ezier control polygon for the first half of the curve, we
can then applys|; o to this control polygon to obtain the &ier control polygon for the second half of the
curve.

Extending this, if we apply

i k
51.2%]0.4]

(thatis, appIyS[0 1 k times and theib; 5 times), we obtain the &zier control polygon for the portion of
2
the curve where ranges betweeij; andi;—,}. By repeatedly applying}; ;, we move our control polygons

along the curve.

Summary

We have developed a matrix form for the cubi@ZBer curve. Using reparameterization, we then devel-
oped matrices which enabled us to produceziBr control polygons for sections of the curve, and to move
from one Bezier control polygon to an adjacent for on the curve. These operations are extremely useful
when utilizing hardware with geometry engines that multiply 4 matrices rapidly.

All contents copyright (c) 1996, 1997, 1998, 1999, 2000
Computer Science Department, University of California, Davis
All rights reserved.

