
On-Line Geometric Modeling Notes

CUBIC BÉZIER CURVES

Kenneth I. Joy
Visualization and Graphics Research Group

Department of Computer Science
University of California, Davis

Overview

The Bézier curve representation is one that is utilized most frequently in computer graphics and geomet-

ric modeling. The curve is defined geometrically, which means that the parameters have geometric meaning

– they are just points in three-dimensional space. It was developed by two competing European engineers

in the late 1960s to attempt to draw automotive components.

In these notes, we develop the cubic Bézier curve. This curve can be developed through a divide-and-

conquer approach similar to the quadratic curve However, in these notes, we will develop a parameterized

version of the curve which proceeds almost identically to the development for the quadratic Bézier curve

Defining The Cubic Bézier Curve

Given four control points, P0, P1, P2, P3, one can generate a curve P(t), as we did in the case of the

quadratic Bézier curve, by

• let P(1)
1 (t) = tP1 + (1− t)P0

• let P(1)
2 (t) = tP2 + (1− t)P1

• let P(1)
3 (t) = tP3 + (1− t)P2

• let P(2)
2 (t) = tP(1)

2 (t) + (1− t)P(1)
1 (t)

• let P(2)
3 (t) = tP(1)

3 (t) + (1− t)P(1)
2 (t)

• let P(3)
3 (t) = tP(2)

3 (t) + (1− t)P(2)
2 (t)

• P(3)
3 (t) is defined to be P(t)

This construction is shown in the figure below

����� �

��� 	

�� �

��
����� �

����� �

���

����� �

� �

!�"�# "

notice that we did the same process as in the quadratic Bézier curve, but did one additional level. The

procedure, as in the quadratic case, produces a point on the curve and subdivides the curve by producing 2

new sets of 4 control points.

Simplifying the above construction, we have

P(t) = P(3)
3 (t)

= tP(2)
3 (t) + (1− t)P(2)

2 (t)

= t
[
tP(1)

3 (t) + (1− t)P(1)
2 (t)

]
+ (1− t)

[
tP(1)

2 (t) + (1− t)P(1)
1 (t)

]
= t2P(1)

3 (t) + 2t(1− t)P(1)
2 (t) + (1− t)2P(1)

1 (t)

= t2 [tP3 + (1− t)P2] + 2t(1− t) [tP2 + (1− t)P1]

+ (1− t)2 [tP1 + (1− t)P0]

= t3P3 + 3t2(1− t)P2 + 3t(1− t)2P1 + (1− t)3P0

which is the analytic form of the curve.

Summarizing the Development of the Curve

As in the quadratic case, we have developed two methods for generating points on the curve.

2

• The Geometric Method– Given the control points P0, P1, P2, P3, and a value t ∈ [0, 1], we can

generate the point P(t) on the Bézier curve by

P(t) = P(3)
3 (t)

where

P(j)
i (t) =

(1− t)P(j−1)
i−1 (t) + tP(j−1)

i (t) if j > 0

Pi otherwise

• The Analytic Method – Given the control points P0, P1, P2, P3, we define the Bézier curve to be

P(t) =
3∑

i=0

PiBi,3(t)

where

B0,3(t) = (1− t)3

B1,3(t) = 3t(1− t)2

B2,3(t) = 3t2(1− t)

B3,3(t) = t3

the Bernstein polynomials of degree three.

Properties of the Cubic B́ezier Curve

The cubic Bézier curve has properties similar to that of the quadratic curve. These can be verified

directly from the equations above.

• P0 and P3 are on the curve.

3

• The curve is continuous, infinitely differentiable, and the second derivatives are continuous (automatic

for a polynomial curve).

• The tangent line to the curve at the point P0 is the line P0P1. The tangent to the curve at the point

P3 is the line P2P3.

• The curve lies within the convex hull of its control points. This is because each successive P(j)
i is a

convex combination of the points P(j−1)
i and P(j−1)

i−1 .

• Both P1 and P2 are on the curve only if the curve is linear.

Summary

The procedure for developing the cubic Bézier curve is nearly identical to that for the quadratic curve

– the primary difference is that we have four control points and must proceed one additional level in the

recursion to get a point on the curve. This procedure is extendable so that Bézier curves can be developed

for any number of control points.

All contents copyright (c) 1996, 1997, 1998, 1999, 2000
Computer Science Department, University of California, Davis
All rights reserved.

4

On-Line Geometric Modeling Notes

A MATRIX FORMULATION OF THE CUBIC B ÉZIER CURVE

Kenneth I. Joy
Visualization and Graphics Research Group

Department of Computer Science
University of California, Davis

Overview

A cubic Bézier curve has a useful representation in a matrix form. This is a non-standard representation

but extremely valuable if we can multiply matrices quickly. The matrix which we develop, when examined

closely, is uniquely defined by the cubic Bernstein polynomials. We can use this form to develop “subdivi-

sion matrices” that allow us to use matrix multiplication to generate different Bézier control polygons for

the cubic curve.

Developing the Matrix Equation

A cubic Bézier Curve can be written in a matrix form by expanding the analytic definition of the curve

into its Bernstein polynomial coefficients, and then writing these coefficients in a matrix form using the

polynomial power basis. That is,

P(t) =
3∑

i=0

PiBi(t)

= (1− t)3P0 + 3t(1− t)2P1 + 3t2(1− t)P2 + t3P3

=
[

(1− t)3 3t(1− t)2 3t2(1− t) t3
]


P0

P1

P2

P3



=
[

1 t t2 t3
]


1 0 0 0

−3 3 0 0

3 −6 3 0

−1 3 −3 1




P0

P1

P2

P3


and so a cubic B́ezier curve is can be written in a matrix form of

[
1 t t2 t3

]
M


P0

P1

P2

P3


where

M =


1 0 0 0

−3 3 0 0

3 −6 3 0

−1 3 −3 1


The matrixM defines the blending functions for the curveP(t) – i.e. the cubic Bernstein polynomials. In

reality there are three equations here, one for each of thex, y andz components ofP(t).

Utilizing equipment that is designed for fast4 × 4 matrix calculations, this formulation can be used to

quickly calculate points on the curve.

2

Subdivision Using the Matrix Form

Suppose we wish to generate the control polygon for the portion of the curveP(t) wheret ranges

between0 and 1
2 – subdivide the curve at the pointt = 1

2 . This can be done by defining a new curveQ(t)

which is equal toP(t
2). Clearly this new curve is a cubic polynomial, and traces out the desired portion of

P ast ranges between0 and1. We can calculate the B́ezier control polygon forQ by using the matrix form

of the curveP.

Q(t) = P(
t

2
)

=
[

1
(

t
2

) (
t
2

)2 (
t
2

)3
]


1 0 0 0

−3 3 0 0

3 −6 3 0

−1 3 −3 1




P0

P1

P2

P3



=
[

1 t t2 t3
]


1 0 0 0

0 1
2 0 0

0 0 1
4 0

0 0 0 1
8




1 0 0 0

−3 3 0 0

3 −6 3 0

−1 3 −3 1




P0

P1

P2

P3



=
[

1 t t2 t3
]
MS[0, 1

2]


P0

P1

P2

P3



3

where the matrixS[0, 1
2]

is defined as

S[0, 1
2]

= M−1


1 0 0 0

0 1
2 0 0

0 0 1
4 0

0 0 0 1
8

 M

=


1 0 0 0

1 1
3 0 0

1 2
3

1
3 0

1 1 1 1




1 0 0 0

0 1
2 0 0

0 0 1
4 0

0 0 0 1
8




1 0 0 0

−3 3 0 0

3 −6 3 0

−1 3 −3 1



=


1 0 0 0

1 1
6 0 0

1 1
3

1
12 0

1 1
2

1
4

1
8




1 0 0 0

−3 3 0 0

3 −6 3 0

−1 3 −3 1



=


1 0 0 0
1
2

1
2 0 0

1
4

1
2

1
4 0

1
8

3
8

3
8

1
8


SoQ(t) is a B́ezier curve, with a control polygon given by

1 0 0 0
1
2

1
2 0 0

1
4

1
2

1
4 0

1
8

3
8

3
8

1
8




P0

P1

P2

P3

 =


P0

1
2P1 + 1

2P0

1
4P2 + 1

2P1 + 1
4P0

1
8P3 + 3

8P2 + 3
8P1 + 1

8P0


In the same way, we can obtain the Bézier control polygon for the second half of the curve – the portion

4

wheret ranges between12 and1. If we call this new curveQ(t), then

Q(t) = P(
1
2

+
t

2
)

=
[

1
(

1
2 + t

2

) (
1
2 + t

2

)2 (
1
2 + t

2

)3
]


1 0 0 0

−3 3 0 0

3 −6 3 0

−1 3 −3 1




P0

P1

P2

P3



=
[

1 t t2 t3
]


1 1
2

1
4

1
8

0 1
2

1
2

3
8

0 0 1
4

3
8

0 0 0 1
8




1 0 0 0

−3 3 0 0

3 −6 3 0

−1 3 −3 1




P0

P1

P2

P3



=
[

1 t t2 t3
]
MS[1

2
,1]


P0

P1

P2

P3


where

S[1
2
,1] =


1
8

3
8

3
8

1
8

0 1
4

1
2

1
4

0 0 1
2

1
2

0 0 0 1


obtaining a matrix that can be applied to the original Bézier control points to produce Bézier control points

for the second half of the curve.

Generating a Sequence of B́ezier Control Polygons.

Using matrix calculations similar to those above, we can generate an iterative scheme to generate a

sequence of points on the curve. To do this, we need one additionalS matrix. If we consider the portion

of the cubic curveP(t) wheret ranges between1 and2, We generate the B́ezier control points ofQ(t) by

5

reparameterization of the original curve – namely by replacingt by t + 1 – to obtain

Q(t) = P(t + 1)

=
[

1 (t + 1) (t + 1)2 (t + 1)3
]


1 0 0 0

−3 3 0 0

3 −6 3 0

−1 3 −3 1




P0

P1

P2

P3



=
[

1 t t2 t3
]


1 1 1 1

0 1 2 3

0 0 1 3

0 0 0 1




1 0 0 0

−3 3 0 0

3 −6 3 0

−1 3 −3 1




P0

P1

P2

P3



=
[

1 t t2 t3
]
MS[1,2]


P0

P1

P2

P3


where, after some calculation,S[1,2] is given by

S[1,2] =


0 0 0 1

0 0 −1 2

0 1 −4 4

−1 6 −12 8


Now, using a combination ofS[0, 1

2]
, S[1

2
,1] andS[1,2], we can produce B́ezier control polygons along

the curve similar to methods developed with divided differences. To see what I mean here, first notice that

S[1,2]S[0, 1
2]

= S[1
2
,1]

This states that by applyingS[0, 1
2]

to obtain a B́ezier control polygon for the first half of the curve, we

can then applyS[1,2] to this control polygon to obtain the Bézier control polygon for the second half of the

curve.

Extending this, if we apply

Si
[1,2]S

k
[0, 1

2]

6

(that is, applyS[0, 1
2]

k times and thenS[1,2] i times), we obtain the B́ezier control polygon for the portion of

the curve wheret ranges betweeni
2k and i+1

2k . By repeatedly applyingS[1,2], we move our control polygons

along the curve.

Summary

We have developed a matrix form for the cubic Bézier curve. Using reparameterization, we then devel-

oped matrices which enabled us to produce Bézier control polygons for sections of the curve, and to move

from one B́ezier control polygon to an adjacent for on the curve. These operations are extremely useful

when utilizing hardware with geometry engines that multiply4× 4 matrices rapidly.

All contents copyright (c) 1996, 1997, 1998, 1999, 2000
Computer Science Department, University of California, Davis
All rights reserved.

7

