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Abstract. An introduction into the theory and application of cubic splines with accompanying Matlab
m-file cspline.m

Introduction
Real world numerical data is usually difficult to analyze. Any function which would

effectively correlate the data would be difficult to obtain and highly unwieldy. To this end,
the idea of the cubic spline was developed. Using this process, a series of unique cubic
polynomials are fitted between each of the data points, with the stipulation that the curve
obtained be continuous and appear smooth. These cubic splines can then be used to
determine rates of change and cumulative change over an interval. In this brief introduction,
we will only discuss splines which interpolate equally spaced data points, although a more
robust form could encompass unequally spaced points.

Theory
The fundamental idea behind cubic spline interpolation is based on the engineer’s tool

used to draw smooth curves through a number of points. This spline consists of weights
attached to a flat surface at the points to be connected. A flexible strip is then bent across
each of these weights, resulting in a pleasingly smooth curve.

The mathematical spline is similar in principle. The points, in this case, are numerical
data. The weights are the coefficients on the cubic polynomials used to interpolate the data.
These coefficients ’bend’ the line so that it passes through each of the data points without
any erratic behavior or breaks in continuity.

Process
The essential idea is to fit a piecewise function of the form

Sx =

s1x if x1 ≤ x < x2

s2x if x2 ≤ x < x3

⋮

sn−1x if xn−1 ≤ x < xn

    (1)

where si is a third degree polynomial defined by

six = aix − x i3 + bix − x i2 + c ix − x i + di     (2)

for i = 1,2, ...,n − 1.

The first and second derivatives of these n − 1 equations are fundamental to this process,
and they are
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si
′x = 3aix − x i2 + 2bix − x i + c i

si
′′x = 6aix − x i + 2bi

    (3)

    (4)

for i = 1,2, ...,n − 1.

The Four Properties of Cubic Splines
Our spline will need to conform to the following stipulations.

1. The piecewise function Sx will interpolate all data points.
2. Sx will be continuous on the interval x1,xn
3. S′x will be continuous on the interval x1,xn
4. S′′x will be continuous on the interval x1,xn

Since the piecewiece function Sx will interpolate all of the data points, we can
conclude that

Sx i = y i     (5)

for i = 1,2, ...,n − 1. Since x i ∈ x i,x i+1, Sx i = six i and we can use equation (2) to
produce

y i = six i

y i = aix i − x i3 + bix i − x i2 + c ix i − x i + di

y i = di

    (6)

for each i = 1,2, ...,n − 1.
Since the curve Sx must be continuous across its entire interval, it can be concluded

that each sub-function must join at the data points, so

six i = si−1x i     (7)

for i = 2,3, ...,n.
From equation (2),

six i = di

and

si−1x i = ai−1x i − x i−13 + bi−1x i − x i−12 + c i−1x i − x i−1 + di−1

    (8)

so

di = ai−1x i − x i−13 + bi−1x i − x i−12 + c i−1x i − x i−1 + di−1     (9)

for i = 2,3, ...,n − 1. Letting h = x i − x i−1 in equation (8), we have

di = ai−1h3 + bi−1h2 + c i−1h + di−1     (10)

for i = 2,3, ...,n − 1.
Also, to make the curve smooth across the interval, the derivatives must be equal at the

data points; that is,

si
′x i = si−1

′ x i     (11)
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However, by equation (3),

si
′x i = c i

and

si−1
′ x i = 3ai−1x i − x i−12 + 2bi−1x i − x i−1 + c i−1

so

c i = 3ai−1x i − x i−12 + 2bi−1x i − x i−1 + c i−1.     (12)

Again, letting h = x i − x i−1, we arrive at

c i = 3ai−1h2 + 2bi−1h + c i−1     (13)

for i = 2,3,…,n − 1.
From equation (4), si

′′x = 6aix − x i + 2bi, so

si
′′x = 6aix − x i + 2bi

si
′′x i = 6aix i − x i + 2bi

si
′′x i = 2bi

    (14)

for i = 2,3, ...,n − 2.

Lastly, since si
′′x has to be continuous across the interval, si

′′x i = si+1
′′ x i for

i = 1,2,3,⋯,n − 1. This and equation (14) lead us to the equation

si
′′x i+1 = 6aix i+1 − x i + 2bi

si+1
′′ x i+1 = 6aix i+1 − x i + 2bi

    (15)

    (16)

and, letting h = x i+1 − x i and using the conclusion from equations (14) and (16),

si+1
′′ x i+1 = 6aix i+1 − x i + 2bi

2bi+1 = 6aih + 2bi

    (17)

    (18)

These equations can be much simplified by substituting Mi for si
′′x i and expressing the

above equations in terms of Mi and y i. This makes the determination of the weights ai, bi,
c i, and di a much easier task. Each bi can be represented by

si
′′x i = 2bi

Mi = 2bi

bi =
Mi

2

    (19)

and di has already been determined to be

di = y i.     (20)

Similarly, using equation ai can be re-written as
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2bi+1 = 6aih + 2bi

6aih = 2bi+1 − 2bi

ai =
2bi+1 − 2bi

6h

ai =
2 Mi+1

2  − 2 Mi

2 
6h

ai =
Mi+1 − Mi

6h

    (21)

and c i can be re-written as

di+1 = aih3 + bih2 + c ih + di

c ih = −aih3 − bih2 − di + di+1

c i =
−aih3 − bih2 − di + di+1

h

c i =
−aih3 − bih2

h
+ −di + di+1

h

c i = −aih2 − bih − di − di+1

h

c i = − Mi+1 − Mi

6h
h2 + Mi

2
h − y i − y i+1

h

c i =
y i+1 − y i

h
−  Mi+1 − Mi

6
h + 3Mi

6
h

c i =
y i+1 − y i

h
−  Mi+1 − Mi + 3Mi

6
h

c i =
y i+1 − y i

h
−  Mi+1 + 2Mi

6
h.

    (22)

We now have our equations for determining the weights for our n − 1 equations

ai =
Mi+1 − Mi

6h

bi =
Mi

2

c i =
y i+1 − y i

h
−  Mi+1 + 2Mi

6
h

di = y i

    (23)

These systems can be handled more conveniently by putting them into matrix form as
follows
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c i+1 = 3aih2 + 2bih + c i

3 Mi+1 − Mi

6h
h2 + 2 Mi

2
h + y i+1 − y i

h
−  Mi+1 + 2Mi

6
h = y i+2 − y i+1

h
−  Mi+2 + 2Mi+1

6
h

3 Mi+1 − Mi

6h
h2 + 2 Mi

2
h −  Mi+1 + 2Mi

6
h +  Mi+2 + 2Mi+1

6
h = − y i+1 − y i

h
 + y i+2 − y i+1

h

h 3Mi+1 − 3Mi

6
+ 6Mi

6
−  Mi+1 + 2Mi

6
 +  Mi+2 + 2Mi+1

6
 = y i − 2y i+1 + y i+2

h
h
6
Mi + 4Mi+1 + Mi+2 = y i − 2y i+1 + y i+2

h

Mi + 4Mi+1 + Mi+2 = 6 y i − 2y i+1 + y i+2

h2 

    (24)

for i = 1,2,3,⋯,n − 1

which leads to the matrix equation

1 4 1 0 ⋯ 0 0 0 0

0 1 4 1 ⋯ 0 0 0 0

0 0 1 4 ⋯ 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

0 0 0 0 ⋯ 4 1 0 0

0 0 0 0 ⋯ 1 4 1 0

0 0 0 0 ⋯ 0 1 4 1

M1

M2

M3

M4

⋮

Mn−3

Mn−2

Mn−1

Mn

= 6
h2

y1 − 2y2 + y3

y2 − 2y3 + y4

y3 − 2y4 + y5

⋮

yn−4 − 2yn−3 + yn−2

yn−3 − 2yn−2 + yn−1

yn−2 − 2yn−1 + yn

    (25)

Note that this system has n − 2 rows and n columns, and is therefore under-determined. In
order to generate a unique cubic spline, two other conditions must be imposed upon the
system. This leads us to our next section.

Three types of Splines

Natural splines

This first spline type includes the stipulation that the second derivative be equal to zero
at the endpoints.

M1 = Mn = 0     (26)

This results in the spline extending as a line outside the endpoints. The matrix for
determining the M1 − Mn values can be adapted accordingly.
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1 0 0 0 ⋯ 0 0 0 0

0 1 4 1 ⋯ 0 0 0 0

0 0 1 4 ⋯ 0 0 0 0

⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮

0 0 0 0 ⋯ 4 1 0 0

0 0 0 0 ⋯ 1 4 1 0

0 0 0 0 ⋯ 0 0 0 1

0

M2

M3

M4

⋮

Mn−3

Mn−2

Mn−1

0

= 6
h2

y1 − 2y2 + y3

y2 − 2y3 + y4

y3 − 2y4 + y5

⋮

yn−4 − 2yn−3 + yn−2

yn−3 − 2yn−2 + yn−1

yn−2 − 2yn−1 + yn

    (27)

For reasons of convenience, the first and last columns of this matrix can be eliminated, as
they correspond to the M1 and Mn values, which are both 0.

4 1 0 ⋯ 0 0 0

1 4 1 ⋯ 0 0 0

0 1 4 ⋯ 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 ⋯ 4 1 0

0 0 0 ⋯ 1 4 1

0 0 0 ⋯ 0 1 4

M2

M3

M4

⋮

Mn−3

Mn−2

Mn−1

= 6
h2

y1 − 2y2 + y3

y2 − 2y3 + y4

y3 − 2y4 + y5

⋮

yn−4 − 2yn−3 + yn−2

yn−3 − 2yn−2 + yn−1

yn−2 − 2yn−1 + yn

    (28)

This results in an n − 2 by n − 2 matrix, which will determine the remaining solutions for M2

through Mn−1. The spline is now unique.
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Figure 1. Natural interpolating curve

Parabolic Runout Spline

The parabolic spline imposes the condition that the second derivative at the endpoints,
M1 and Mn, be equal to M2 and Mn−1 respectively.

M1 = M2

Mn = Mn−1

    (29)

The result of this condition is the curve becomes a parabolic curve at the endpoint. This
type of cubic spline is useful for periodic and exponential data.

The matrix equation for this type of spline is

5 1 0 ⋯ 0 0 0

1 4 1 ⋯ 0 0 0

0 1 4 ⋯ 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 ⋯ 4 1 0

0 0 0 ⋯ 1 4 1

0 0 0 ⋯ 0 1 5

M2

M3

M4

⋮

Mn−3

Mn−2

Mn−1

= 6
h2

y1 − 2y2 + y3

y2 − 2y3 + y4

y3 − 2y4 + y5

⋮

yn−4 − 2yn−3 + yn−2

yn−3 − 2yn−2 + yn−1

yn−2 − 2yn−1 + yn

    (30)

We can now determine the values for M2 through Mn−1, with the values for M1 and Mn

already determined.
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Figure 2. Parabolic Runout curve

Note that the endpoint behavior is a bit more extreme than with the natural spline option.

Cubic Runout Spline

This last type of spline has the most extreme endpoint behavior. It assigns M1 to be
2M2 − M3 and Mn to be 2Mn−1 − Mn−2. This causes the curve to degrade to a single cubic
curve over the last two intervals, rather than two separate functions.

The matrix equation for this type is

6 0 0 ⋯ 0 0 0

1 4 1 ⋯ 0 0 0

0 1 4 ⋯ 0 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮

0 0 0 ⋯ 4 1 0

0 0 0 ⋯ 1 4 1

0 0 0 ⋯ 0 0 6

M2

M3

M4

⋮

Mn−3

Mn−2

Mn−1

= 6
h2

y1 − 2y2 + y3

y2 − 2y3 + y4

y3 − 2y4 + y5

⋮

yn−4 − 2yn−3 + yn−2

yn−3 − 2yn−2 + yn−1

yn−2 − 2yn−1 + yn

    (31)
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Figure 3. Cubic Runout curve

Note the pronounced curvature at the endpoints.

Keep in mind that there are many other types of interpolating spline curves, such as the
Periodic Spline and the Clamped Spline. The three discussed in this work are simply the
ones which we have chosen to examine; they are not intrinsically superior to, or more widely
used than these other types of splines.

Curve Fitting with Splines

The main application of cubic spline interpolation techniques is, of course, curve fitting.
To this end, the consistency and efficiency of the spline as a data correlation tool will be
demonstrated.

Function Imitation

Cubic splines would not be necessary were it simple to determine a well-behaved
function to fit any data set. This is, however, usually not the case. Thus, the cubic spline
technique is used to generate a function to fit the data. Moreover, it can be shown that data
generated by a particular function is interpolated by a spline which behaves more or less like
the original function. This is testimony to the consistency of splines.

For example, the following figure was generated using the function y = sinx.
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Figure 4. The graph of y = sinx.

This next figure was generated by connecting six data points along the above line with a
cubic spline function.
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Figure 5. Spline through six points on a sine curve.

By superimposing Figure 5 on Figure 4, we can see the degree to which the cubic curve
imitates the original function y = sinx.
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Figure 6. Superimposition of a spline curve on a sine function.

Clearly, the cubic curve closely imitates the sine curve. It has no extreme behavior between
data points, and it effectively correlates the points.

This characteristic also works with more erratic functions. Take for instance the
function below.
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Figure 7. A cubic spline approximation of sinx + cosx
3
4 .

While the fit is not perfect, it does closely approximate the function without a great degree of
divergence.

Data interpretation

The splines other strength lies in its ability to correlate data which doesn’t follow any
specific pattern without a single polynomial’s extreme behavior. Take, for instance, the 100
random data points below.
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Figure 8. Random data points

Clearly there is no relation between these data points. A spline, however, can interpolate
all 100 points without the drastic behavior that the necessary 99th degree polynomial would
exhibit.
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- 0 . 2
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0 . 8
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1 . 2

Figure 9. Cubic curve through the random data.

Note that, while the spline is not exactly pleasing to the eye, its range stays from 0 to 1.2;
a much more reasonable range than an approximating polynomial. Also, it is not much of a
task to generate an approximating spline which generally correlates the data while being
much more well behaved.
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Figure 10. Approximating cubic curve

The above figure demonstrates the general trends in the data (of which there are none)
without necessarily connecting all data points. Its curvature is much less severe than that of
fig 9.

Cubic Splines and Matlab

All of the graphics in this paper were generated using a cubic spline m-file and Matlab
software. The m-file used is available for download at

http://online.redwoods.cc.ca.us/instruct/darnold/laproj/fall98/Skymeg

Conclusion

Cubic spline interpolation is a powerful data analysis tool. Splines correlate data
efficiently and effectively, no matter how random the data may seem. Once the algorithm
for spline generation is produced, interpolating data with a spline becomes an easy task.
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