SIMPSON'S RULE ERROR FORMULA

Recall the general Simpson’s rule

/Zf(w) dx ~ Sn(f) E%[f(xo) + 4f(z1) + 2f(z)

+4f(w3) + 2 (wa) + -+
+2f(37n—2) T 4f(37n—1) + f(CEn)]

For its error, we have
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B(f) = [ f(2)dz - Sn(f) = -

for some a < ¢, < b, with ¢, otherwise unknown. For
an asymptotic error estimate,
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DISCUSSION

For Simpson’s error formula, both formulas assume
that the integrand f(x) has four continuous deriva-
tives on the interval [a,b]. What happens when this
is not valid?

Both formulas also say the error should decrease by a
factor of around 16 when n is doubled.

Compare these results with those for the trapezoidal

rule error formulas:.

h? (b —
12

I = [ @) de— 1) = 0D g ()

2 ~
BL(f) ~ ~ 35 [£(6) = (@) = BE()



EXAMPLE

Consider evaluating

I:/2 dx
0 1+ x2

using Simpson's rule Sy (f). How large should n be

chosen in order to ensure that
ES(f)| <5x 107

Begin by noting that
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Then ‘Eg(f)‘ < 5 x 1079 is true if

Ah%

— < 5x10°°
15

h < .0658
n > 30.39

Therefore, choosing n > 32 will give the desired er-
ror bound. Compare this with the earlier trapezoidal
example in which n > 517 was needed.

For the asymptotic error estimate, we have
|
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INTEGRATING sqrt(z)

Consider the numerical approximation of

1 J 2
t €T €T — —

In the following table, we give the errors when using
both the trapezoidal and Simpson rules.

EL Ratio E,;? Ratio
6.311F — 2 2.860F — 2
2338 —2 270 | 1.012E —2 2.82
8.536E —3 2.74 | 3.587E -3 2.83
16 | 3.085FE —3 2.77 | 1.268E —3 2.83
32| 1.108E —3 2.78 | 4.485E —4 2.83
64 | 3.950F —4 280 | 1.586FE —4 2.83
128 | 1.410E —4 2.81 | 5.606E —5 2.83

oo~ NS

The rate of convergence is slower because the func-
tion f(x) =sqrt(x) is not sufficiently differentiable on
[0,1]. Both methods converge with a rate propor-
tional to hl-.



ASYMPTOTIC ERROR FORMULAS
If we have a numerical integration formula,
b n
| f@)de ~ Y w;f(a))
a Jry
let En(f) denote its error,
b n
Bu(f) = [ f(2)dw =Y w;f(z))
7=0

We say another formula En(f) is an asymptotic error
formula this numerical integration if it satisfies

Equivalently,
lim En(f) T En(f) —
n—eo En(f)

These conditions say that En(f) looks increasingly
like En(f) as n increases, and thus

En(f) =~ En(f)

0




EXAMPLE. For the trapezoidal rule,

' h2 / /
B () = Eq () = =2 [1/(0) = f(a))

This assumes f(x) has two continuous derivatives on

the interval [a, b].
EXAMPLE. For Simpson’s rule,

T — h4 i i
En(f) = Ej(f) = =155 [1(0) = "(0)]

This assumes f(x) has four continuous derivatives on
the interval [a, b].

Note that both of these formulas can be written in an
equivalent form as

for appropriate constant ¢ and exponent p. With the
trapezoidal rule, p = 2 and

—a 2
O ) - )

and for Simpson’s rule, p = 4 with a suitable c.

Cc =



The formula

Bn(f)=— (%)

occurs for other many numerical integration formulas
that we have not yet defined or studied. In addition,
if we use the trapezoidal or Simpson rules with an
integrand f(x) which is not sufficiently differentiable,
then (*) may hold with an exponent p that is less than
the ideal.

EXAMPLE. Consider

1
I:/ 2P dx
0

in which —1 < 8 < 1, 8 # 0. Then the conver-
gence of the trapezoidal rule can be shown to have an
asymptotic error formula

c
1 ()

for some constant ¢ dependent on 3. A similar result
holds for Simpson'’s rule, with —1 < 8 < 3, 8 not an
integer. We can actually specify a formula for ¢; but
the formula is often less important than knowing that
(*x) is valid for some c.

En%En:




APPLICATION OF ASYMPTOTIC
ERROR FORMULAS

Assume we know that an asymptotic error formula

is valid for some numerical integration rule denoted by
Iyn. Initially, assume we know the exponent p. Then
iImagine calculating both I, and Ip,,. With I»,, we

have
C
This leads to
I -1, = 2P[I — Ip,]

op—1 v Top g

The formula
I ~1 %k sk
2n + o _ 1 ( )

is called Richardson’s extrapolation formula.




EXAMPLE. With the trapezoidal rule and with the
integrand f(x) having two continuous derivatives,

I~ T2n + = [T2n — Tn]

EXAMPLE. With Simpson s rule and with the inte-
grand f(x) having four continuous derivatives,

I~ S2n “" [S2n — Sn]

We can also use the formula (**) to obtain error es-

timation formulas:

I — I», =~ * %
2n o _ 1 ( )
This is called Richardson’s error estimate. For exam-

ple, with the trapezoidal rule,

1
I — T2n ~ § [T2n — Tn]

These formulas are illustrated for the trapezoidal rule
in an accompanying table, for

s ™ 1
/O % cosz dr = —= 2+ = _12.07034632



AITKEN EXTRAPOLATION

In this case, we again assume

C

npP
But in contrast to previously, we do not know either
c or p. Imagine computing I, I>,, and I4,. Then

c
I -1, ~ EL
I -1, ~ 2pcnp
I — 1, ~ T
We can directly try to estimate I. Dividing
I—1n szNI—I2n

I—Ip, = I—Iay
Solving for I, we obtain

(I - I2n)2
1 (In + Ian — 2I2n)

Q

(I = In) (I = Ian)

Inlyn — I3,
Inlgy — I3

In + I4n, — 212y,

Q




This can be improved computationally, to avoid loss
of significance errors.

I In, — I2
I ~ Igp+ |—2 20,
In + Ipp, — 215y,
(I4n - I2n)2

— I4n

(I4n — I2n) _ (I2n - In)
This is called Aitken’s extrapolation formula.

To estimate p, we use
Ign — Ion

~ 2P

To see this, write
Ipp, —In (I —1Ipn) — (I — Iyy)

Iap — Iy B (I — I2n) _ (I — I4n)
Then substitute from the following and simplify:

C
I -1, ~ e

C
I=ln = b
I—I4n ~ c



EXAMPLE. Consider the following table of numerical
integrals. What is its order of convergence?

n In In — 11 Ratio

2
2 .28451779686
4 .28559254576 1.075E — 3
8 .28570248748 1.099E —4 9.78
16 .28571317731 1.069E —5 10.28
32 .28571418363 1.006E —6 10.62
64 .28571427643 9.280F —8 10.84

It appears

oP = 10.84,  p = log,10.84 = 3.44

We could now combine this with Richardson’s error
formula to estimate the error:

1

For example,

1
I — Igq = > ad [9.280F — 8] = 3.803F — 8



PERIODIC FUNCTIONS

A function f(x) is periodic if the following condition

is satisfied. There is a smallest real number 7 > 0 for
which

flzx+71)= f(x), —oo < x <00, (%)

The number 7 is called the period of the function
f(x). The constant function f(x) =1 is also consid-
ered periodic, but it satisfies this condition with any
7 > 0. Basically, a periodic function is one which
repeats itself over intervals of length 7.

The condition (x) implies

F e+ 1) = f(@),  —co <z <oo, (%)

for the mt"-derivative of f(x), provided there is such
a derivative. Thus the derivatives are also periodic.

Periodic functions occur very frequently in applica-
tions of mathematics, reflecting the periodicity of many
phenomena in the physical world.



PERIODIC INTEGRANDS

Consider the special class of integrals

1= ' f(2) da

in which f(z) is periodic, with b—a an integer multiple
of the period 7 for f(x). In this case, the performance
of the trapezoidal rule and other numerical integration
rules is much better than that predicted by earlier error
formulas.

To hint at this improved performance, recall

b o~ h? / /
| f@)de = Tu(f) = En(f) = =35 [£/(6) = £(a)

With our assumption on the periodicity of f(x), we
have

fla) = f(b), f'(a) = £'(b)

Therefore,

En(f) =0



and we should expect improved performance in the
convergence behaviour of the trapezoidal sums Ty, ( f).

If in addition to being periodic on [a, b], the integrand
f(x) also has m continous derivatives, then it can be
shown that

I(f) —Tn(f) = im + smaller terms

By “smaller terms”, we mean terms which decrease

to zero more rapidly than n™".

Thus if f(x) is periodic with b — a an integer multiple
of the period 7 for f(x), and if f(x) is infinitely differ-
entiable, then the error I — I}, decreases to zero more
rapidly than n=" for any m > 0. For periodic inte-
grands, the trapezoidal rule is an optimal numerical
integration method.



EXAMPLE. Consider evaluating

7— 21 sinx dx
_/0 1_|_esina:

Using the trapezoidal rule, we have the results in the

following table. In this case, the formulas based on
Richardson extrapolation are no longer valid.

2 0.0

4 —0.72589193317292 —7.259F —1

8 —0.74006131211583 —1.417E — 2
16 —0.74006942337672 —8.111FE —6
32 —0.74006942337946 —2.746FE — 12
64 —0.74006942337946 0.0



