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arl Gustav Jacob Jacobi was the second
son of a successful banker in Potsdam,
Germany. After completing his secondary
schooling in Potsdam in 1821, he entered the
University of Berlin. In 1825, having been
granted a doctorate in mathematics, Jacobi
served as a lecturer at the University of
Berlin. Then he accepted a position in mathe-
matics at the University of Königsberg.

Jacobi’s mathematical writings encom-
passed a wide variety of topics, including
elliptic functions, functions of a complex
variable, functional determinants (called
Jacobians), differential equations, and Abelian
functions. Jacobi was the first to apply elliptic
functions to the theory of numbers, and he
was able to prove a longstanding conjecture
by Fermat that every positive integer can be

written as the sum of four perfect squares.
(For instance, ) He
also contributed to several branches of mathe-
matical physics, including dynamics, celestial
mechanics, and fluid dynamics.

In spite of his contributions to applied
mathematics, Jacobi did not believe that math-
ematical research needed to be justified by its
applicability. He stated that the sole end of
science and mathematics is “the honor of the
human mind” and that “a question about 
numbers is worth as much as a question about
the system of the world.”

Jacobi was such an incessant worker that in
1842 his health failed and he retired to Berlin.
By the time of his death in 1851, he had
become one of the most famous mathemati-
cians in Europe.

10 5 12 1 12 1 22 1 22.

10.1 GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING
In Chapter 1 two methods for solving a system of n linear equations in n variables were 
discussed. When either of these methods (Gaussian elimination and Gauss-Jordan elimina-
tion) is used with a digital computer, the computer introduces a problem that we have not
dealt with yet—rounding error.

Digital computers store real numbers in floating point form,

± ,

where k is an integer and the mantissa M satisfies the inequality 0.1 ≤ M < 1. For instance,
the floating point forms of some real numbers are as follows.

Real Number Floating Point Form

527

–3.81623

0.00045 0.45 3 1023

20.381623 3 101

0.527 3 103

M 3 10k

Carl Gustav Jacob

Jacobi
1 8 0 4 – 1 8 5 1
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The number of decimal places that can be stored in the mantissa depends on the computer.
If n places are stored, then we say that the computer stores n significant digits. Additional
digits are either truncated or rounded off. When a number is truncated to n significant
digits, all digits after the first n significant digits are simply omitted. For instance, truncated
to two significant digits, the number 0.1251 becomes 0.12.

When a number is rounded to n significant digits, the last retained digit is increased by
one if the discarded portion is greater than half a digit, and the last retained digit is not
changed if the discarded portion is less than half a digit. For instance, rounded to two sig-
nificant digits, 0.1251 becomes 0.13 and 0.1249 becomes 0.12. For the special case in
which the discarded portion is precisely half a digit, we round so that the last retained digit
is even. Thus, rounded to two significant digits, 0.125 becomes 0.12 and 0.135 becomes
0.14.

Whenever the computer truncates or rounds, a rounding error that can affect subsequent
calculations is introduced. The result after rounding or truncating is called the stored value.

E X A M P L E  1 Finding the Stored Value of Number

Determine the stored value of each of the following real numbers in a computer that rounds
to three significant digits.

(a) 54.7 (b) 0.1134 (c) –8.2256
(d) 0.08335 (e) 0.08345

Solution Number Floating Point Form Stored Value

(a) 54.7

(b) 0.1134

(c) –8.2256

(d) 0.08335

(e) 0.08345

Note in parts (d) and (e) that when the discarded portion of a decimal is precisely half a
digit, the number is rounded so that the stored value ends in an even digit.

R E M A R K :  Most computers store numbers in binary form (base two) rather than decimal
form (base ten). Because rounding occurs in both systems, however, we will restrict our dis-
cussion to the more familiar base ten.

Rounding error tends to propagate as the number of arithmetic operations increases. This
phenomenon is illustrated in the following example.

E X A M P L E 2 Propagation of Rounding Error

Evaluate the determinant of the matrix

A 5 30.12

0.12

0.23

0.124,

 0.834 3 1021 0.8345 3 1021

 0.834 3 1021 0.8335 3 1021

 20.823 3 101 20.82256 3 101

 0.113 3 100 0.1134 3 100

 0.547 3 102 0.547 3 102 
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rounding each intermediate calculation to two significant digits. Then find the exact solu-
tion and compare the two results.

Solution Rounding each intermediate calculation to two significant digits, we obtain the following.

Round to two significant digits

On the other hand, the exact solution is

Thus, to two significant digits, the correct solution is . Note that the rounded solu-
tion is not correct to two significant digits, even though each arithmetic operation was per-
formed with two significant digits of accuracy. This is what we mean when we say that
arithmetic operations tend to propagate rounding error.

In Example 2, by rounding at the intermediate steps we introduced a rounding error of

Rounding error

Although this error may seem slight, it represents a percentage errorof

Percentage error

In most practical applications, a percentage error of this magnitude would be intolerable.
Keep in mind that this particular percentage error arose with only a few arithmetic steps.
When the number of arithmetic steps increases, the likelihood of a large percentage error
also increases.

Gaussian Elimination with Partial Pivoting
For large systems of linear equations, Gaussian elimination can involve hundreds of arith-
metic computations, each of which can produce rounding error. The following straightfor-
ward example illustrates the potential magnitude of the problem.

E X A M P L E  3 Gaussian Elimination and Rounding Error

Use Gaussian elimination to solve the following system.

0.143x1 + 0.357x2 + 2.01x3 5 −5.173

−1.31x1 + 0.911x2 + 1.99x3 5 −5.458

11.2x1 − 4.30x2 − 0.605x3 5 4.415

After eachintermediate calculation, round the result to three significant digits.

0.0008

0.0132
< 0.061 5 6.1%.

20.0132 2 (20.014) 5 0.0008.

20.013

  5 20.0132.

 |A| 5 0.0144 2 0.0276

  5 20.014

 < 0.014 2 0.028

 5 0.0144 2 0.0276

 |A| 5 s0.12)(0.12) 2 (0.12)(0.23)
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T E C H N O L O G Y
N O T E

You can see the effect of round-
ing on a calculator. For example,
the determinant of

is –4. However, the TI-85
calculates the greatest integer
of the determinant of A to be
–5: int det A Do you
see what happened?

5 25.

A 5 33

2

11

64



Solution Applying Gaussian elimination to the augmented matrix for this system produces the
following.

Thus and using back-substitution we obtain and 
Try checking this “solution” in the original system of equations to see that it is not correct.
(The correct solution is and )

What went wrong with the Gaussian elimination procedure used in Example 3? Clearly,
rounding error propagated to such an extent that the final “solution” became hopelessly in-
accurate.

Part of the problem is that the original augmented matrix contains entries that differ in
orders of magnitude. For instance, the first column of the matrix

has entries that increase roughly by powers of ten as one moves down the column. In 
subsequent elementary row operations, the first row was multiplied by 1.31 and –11.2 and

3
0.143

21.31

11.2

0.357

0.911

24.30

2.01

1.99

20.605

25.17

25.46

4.424

x3 5 23.x1 5 1, x2 5 2,

x1 5 20.950.x2 5 22.82x3 5 22.00,

3
1.00

20.00

0.00

2.50

1.00

0.00

14.1

4.89

1.00

236.2

212.6

22.004
3

1.00

20.00

0.00

2.50

1.00

0.00

14.1

4.89

21.00

236.2

212.6

2.004
3

1.00

20.00

0.00

2.50

1.00

232.3

14.1

4.89

2159.

236.2

212.6

409. 4
3

1.00

20.00

0.00

2.50

4.19

232.3

14.1

20.5

2159.

236.2

252.9

409. 4
3

1.00

20.00

11.2

2.50

4.19

24.30

14.1

20.5

20.605

236.2

252.9

4.424
3

1.00

21.31

11.2

2.50

0.911

24.30

14.1

1.99

20.605

236.2

25.46

4.424
3

0.143

21.31

11.2

0.357

0.911

24.30

2.01

1.99

20.605

25.17

25.46

4.424
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Dividing the first row 

by 0.143 produces a 

new first row.

Adding 1.31 times the

first row to the second row

produces a new second row.

Adding –11.2 times the

first row to the third row

produces a new third row.

Dividing the second row

by 4.19 produces a new

second row.

Adding 32.3 times the

second row to the third row

produces a new third row.

Multiplying the third row

by –1 produces a new

third row.



the second row was multiplied by 32.3. When floating point arithmetic is used, such large
row multipliers tend to propagate rounding error. This type of error propagation can be less-
ened by appropriate row interchanges that produce smaller multipliers. One method for re-
stricting the size of the multipliers is called Gaussian elimination with partial pivoting.

Example 4 shows what happens when this partial pivoting technique is used on the
system of linear equations given in Example 3.

E X A M P L E  4 Gaussian Elimination with Partial Pivoting

Use Gaussian elimination with partial pivoting to solve the system of linear equations given
in Example 3. After each intermediate calculation, round the result to three significant
digits.

Solution As in Example 3, the augmented matrix for this system is

↑
Pivot

In the left column 11.2 is the pivot because it is the entry that has the largest absolute value.
Therefore we interchange the first and third rows and apply elementary row operations as
follows.

3
1.00

21.31

0.143

20.384

0.911

0.357

20.0540

1.99

2.01

0.395

25.46

25.174
3

11.2

21.31

0.143

24.30

0.911

0.357

20.605

1.99

2.01

4.42

25.46

25.174

3
0.143

21.31

11.2

0.357

0.911

24.30

2.01

1.99

20.605

25.17

25.46

4.424.
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Gaussian Elimination
with Partial Pivoting

1. Find the entry in the left column with the largest absolute value. This entry is called
the pivot.

2. Perform a row interchange, if necessary, so that the pivot is in the first row.
3. Divide the first row by the pivot. (This step is unnecessary if the pivot is 1.)
4. Use elementary row operations to reduce the remaining entries in the first column to

zero.

The completion of these four steps is called a pass.After performing the first pass,
ignore the first row and first column and repeat the four steps on the remaining subma-
trix. Continue this process until the matrix is in row-echelon form.

Interchange the

first and third

rows.

Dividing the first row

by 11.2 produces a new

first row.



This completes the first pass. For the second pass we consider the submatrix formed by
deleting the first row and first column. In this matrix the pivot is 0.412, which means that
the second and third rows should be interchanged. Then we proceed with Gaussian elimi-
nation as follows.

Pivot

This completes the second pass, and we can complete the entire procedure by dividing the
third row by as follows.

Thus and using back-substitution we have x2 5 2.00 and x1 5 1.00, which
agrees with the exact solution of and when rounded to three
significant digits.

R E M A R K :  Note that the row multipliers used in Example 4 are 1.31, and
as contrasted with the multipliers of 1.31, 11.2, and 32.3 encountered in Example 3.

The term partial in partial pivoting refers to the fact that in each pivot search only entries
in the left column of the matrix or submatrix are considered. This search can be extended
to include every entry in the coefficient matrix or submatrix; the resulting technique is
called Gaussian elimination with complete pivoting.Unfortunately, neither complete 
pivoting nor partial pivoting solves all problems of rounding error. Some systems of linear

20.408,
20.143,

x3 5 23x1 5 1, x2 5 2,
x3 5 23.00,

3
1.00

20.00

0.00

20.384

1.00

0.00

20.0540

4.90

1.00

0.395

212.7

23.004
20.0800

3
1.00

20.00

0.00

20.384

1.00

0.00

20.0540

4.90

20.0800

0.395

212.7

0.2404
3

1.00

20.00

0.00

20.384

1.00

0.408

20.0540

4.90

1.92

0.395

212.7

24.944
3

1.00

20.00

0.00

20.384

0.412

0.408

20.0540

2.02

1.92

0.395

25.23

24.944

3
1.00

20.00

0.00

20.384

0.408

0.412

20.0540

1.92

2.02

0.395

24.94

25.234
3

1.00

20.00

0.143

20.384

0.408

0.357

20.0540

1.92

2.01

0.395

24.94

25.174
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Adding 1.31 times the first 

row to the second row 

produces a new second row.

Adding – 0.143 times the

first row to the third row

produces a new third row.

Interchange the 

second and third

rows.

Dividing the second row

by 0.412 produces a new 

second row.

Adding –0.408 times the

second row to the third row 

produces a new third row.

Dividing the third row

by –0.0800 produces a

new third row.



equations, called ill-conditioned systems, are extremely sensitive to numerical errors. For
such systems, pivoting is not much help. A common type of system of linear equations that
tends to be ill-conditioned is one for which the determinant of the coefficient matrix is
nearly zero. The next example illustrates this problem.

E X A M P L E  5 An Ill-Conditioned System of Linear Equations

Use Gaussian elimination to solve the following system of linear equations.

Round each intermediate calculation to four significant digits.

Solution Using Gaussian elimination with rational arithmetic, we find the exact solution to be
and But rounding 401/400 to four significant digits

introduces a large rounding error, as follows.

Thus and back-substitution produces

This “solution” represents a percentage error of 25% for both the x-value and the y-value.
Note that this error was caused by a rounding error of only 0.0005 (when we rounded
1.0025 to 1.002).

 5 210,000.

 x 5 2y

y 5 10,000

31

0

1

1.00

0

10,0004

31

0

1

0.002

0

204

31

1

1

1.002

0

204

5 1.0025x 5 28000.y 5 8000

 x 1
401

400
y 5 20

 x 1
401

400
y 5 20
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In Exercises 1–8, express the given real number in floating point
form.

1. 4281 2. 321.61 3. 22.62 4.221.001

5. 20.00121 6. 0.00026 7. 8.

In Exercises 9–16, determine the stored value of the given real
number in a computer that rounds to (a) three significant digits and
(b) four significant digits.

9. 331 10. 21.4 11. 292.646 12. 216.964

13. 14. 15. 16.

In Exercises 17 and 18, evaluate the determinant of the given
matrix, rounding each intermediate calculation to three significant
digits. Then compare the rounded value with the exact solution.

17. 18.

In Exercises 19 and 20, use Gaussian elimination to solve the
given system of linear equations. After each intermediate calcula-
tion, round the result to three significant digits. Then compare this
solution with the exact solution.

19. 20.

20.

In Exercises 21–24, use Gaussian elimination without partial pivot-
ing to solve the system of linear equations, rounding to three sig-
nificant digits after each intermediate calculation. Then use partial
pivoting to solve the same system, again rounding to three signifi-
cant digits after each intermediate calculation. Finally, compare
both solutions with the given exact solution.

21. 22.

21. 22.

23.

23.

23.

24.

24.

24.

sExact: x 5 1, y 5 1, z 5 1d
 81.400x 1 61.12y 1 1.180z 5 83.7

 4.810x 2 05.92y 1 1.110z 5 00.0

 0.007x 1 61.20y 1 0.093z 5 61.3

sExact: x 5 20.49, y 5 0.1, z 5 20d
 2x 2 4.05y 1 0.05000z 5 20.385

 2x 2 4.00y 1 0.00600z 5 20.21

 x 1 4.01y 1 0.00445z 5 20.00

sExact: x 5 10, y 5 1dsExact: x 5 1, y 5 1d
99.00x 2 449.0y 5 541.06x 1 6.20y 5 12.20

00.51x 1 992.6y 5 997.76x 1 1.04y 5 12.04

81.6x 2 97.4y 5 179.04.66x 1 64.4y 5 111.0

14.4x 2 17.1y 5 031.51.21x 1 16.7y 5 028.8

32.12

1.07

4.22

2.1243 1.24

66.00

56.00

1.024

1
6

1
7

5
32

7
16

161
2

1
8

In Exercises 25 and 26, use Gaussian elimination to solve the 
ill-conditioned system of linear equations, rounding each intermedi-
ate calculation to three significant digits. Then compare this solu-
tion with the given exact solution.

25. 26.

25. 26.

27. Consider the ill-conditioned systems

Calculate the solution to each system. Notice that although
the systems are almost the same, their solutions differ greatly.

28. Repeat Exercise 27 for the systems

29. The Hilbert matrix of size is the symmetric
matrix where As n increases,
the Hilbert matrix becomes more and more ill-conditioned.
Use Gaussian elimination to solve the following system of
linear equations, rounding to two significant digits after each
intermediate calculation. Compare this solution with the exact
solution 

30. Repeat Exercise 29 for where 
rounding to four significant digits. Compare this solution with
the exact solution 

31. The inverse of the Hilbert matrix Hn has integer en-
tries. Use your computer of graphing calculator to calculate
the inverses of the Hilbert matrices Hn for 
For what values of n do the inverses appear to be accurate?

n 5 4, 5, 6, and 7.

n 3 n

140d.
sx1 5 24, x2 5 60, x3 5 2180, and x4 5

b 5 s1, 1, 1, 1dT,H4x 5 b,

 13 x1 1
1
4 x2 1

1
5 x3 5 1

 12 x1 1
1
3 x2 1

1
4 x3 5 1

 x1 1
1
2 x2 1

1
3 x3 5 1

sx1 5 3, x2 5 224, and x3 5 30d.

aij 5 1ysi 1 j 2 1d.Hn 5 faijg,
n 3 nn 3 n

21.001x 1 y 5 0.001             21.001x 1 y 5 0.

21.001x 2 y 5 0       and       21.001x 2 y 5 0

x 1 1.0001y 5 2     and     x 1 1.0001y 5 2.0001.

x 1 1.0001y 5 2     and     x 1 1.0001y 5 2

y 5 48,060dy 5 210,818d
sExact: x 5 48,010,sExact: x 5 10,820,

2x 1
800
800 y 5 50x 1

600
601 y 5 20

2x 2
800
801 y 5 10x 1

600
600 y 5 2

C
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