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62rl Gustav Jacob Jacobi was the second
son of a successful banker in Potsdam,
Germany. After completing his secondary
schooling in Potsdam in 1821, he entered the
University of Berlin. In 1825, having been
granted a doctorate in mathematics, Jacobi
served as a lecturer at the University of
Berlin. Then he accepted a position in mathe-
matics at the University of Kdnigsberg.
Jacobi’'s mathematical writings encom-
passed a wide variety of topics, including
elliptic functions, functions of a complex
variable, functional determinants (called
Jacobians), differential equations, and Abelian
functions. Jacobi was the first to apply elliptic
functions to the theory of numbers, and he
was able to prove a longstanding conjecture
by Fermat that every positive integer can be

written as the sum of four perfect squares.
(For instancel0 = 12 + 12 + 22 + 22. ) He
also contributed to several branches of mathe-
matical physics, including dynamics, celestial
mechanics, and fluid dynamics.

In spite of his contributions to applied
mathematics, Jacobi did not believe that math-
ematical research needed to be justified by its
applicability. He stated that the sole end of
science and mathematics is “the honor of the
human mind” and that “a question about
numbers is worth as much as a question about
the system of the world.”

Jacobi was such an incessant worker that in
1842 his health failed and he retired to Berlin.
By the time of his death in 1851, he had
become one of the most famous mathemati-
cians in Europe.

10.1 GAUSSIAN ELIMINATION WITH PARTIAL PIVOTING

In Chapter 1 two methods for solving a systerm ¢ihear equations im variables were
discussed. When either of these methods (Gaussian elimination and Gauss-Jordan elimina-
tion) is used with a digital computer, the computer introduces a problem that we have not

dealt with yet—ounding error.

Digital computers store real numberdlwating point form,

+M X 10%

wherek is an integer and thmantissaM satisfies the inequality 0 M < 1. For instance,
the floating point forms of some real numbers are as follows.

Real Number Floating Point Form
527 0.527 x 103
-3.81623 —0.381623 x 10t
0.00045 0.45 x 1073
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The number of decimal places that can be stored in the mantissa depends on the compt
If n places are stored, then we say that the computer steigsificant digits. Additional

digits are either truncated or rounded off. When a numbgungated to n significant
digits, all digits after the firgt significant digits are simply omitted. For instance, truncated
to two significant digits, the number 0.1251 becomes 0.12.

When a number iunded to n significant digits, the last retained digit is increased by
one if the discarded portion is greater than half a digit, and the last retained digit is nc
changed if the discarded portion is less than half a digit. For instance, rounded to two si
nificant digits, 0.1251 becomes 0.13 and 0.1249 becomes 0.12. For the special case
which the discarded portion is precisely half a digit, we round so that the last retained dig
is even. Thus, rounded to two significant digits, 0.125 becomes 0.12 and 0.135 becom
0.14.

Whenever the computer truncates or rounds, a rounding error that can affect subsequ
calculations is introduced. The result after rounding or truncating is callstbtkd value.

EXAMPLE 1 Finding the Stored Value of Number
Determine the stored value of each of the following real numbers in a computer that rounc
to three significant digits.
(a) 54.7 (b) 0.1134 (c) -8.2256
(d) 0.08335 (e) 0.08345
Solution Number Floating Point Form Stored Value
(a) 54.7 0.547 x 10? 0.547 x 10?
(b) 0.1134 0.1134 x 10° 0.113 x 10°
(c) —8.2256 —0.82256 x 10 —0.823 x 10!
(d) 0.08335 0.8335 x 10°* 0.834 x 107
(e) 0.08345 0.8345 x 107! 0.834 x 1071
Note in parts (d) and (e) that when the discarded portion of a decimal is precisely half
digit, the number is rounded so that the stored value ends in an even digit.
REMARK: Most computers store numbers in binary form (base two) rather than decima
form (base ten). Because rounding occurs in both systems, however, we will restrict our di
cussion to the more familiar base ten.
Rounding error tends to propagate as the number of arithmetic operations increases. T
phenomenon is illustrated in the following example.
EXAMPLE 2 Propagation of Rounding Error

Evaluate the determinant of the matrix

_[0.12 0.23
012 012
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rounding each intermediate calculation to two significant digits. Then find the exact solu-
tion and compare the two results.

Solution  Rounding each intermediate calculation to two significant digits, we obtain the following.

|A| = (0.12)(0.12) — (0.12)(0.23)

= 0.0144 — 0.0276
~ 0.014 — 0.028 Round to two significant digits
= —0.014
On the other hand, the exact solution is
|A| = 0.0144 — 0.0276
= —0.0132.
Thus, to two significant digits, the correct solution-i8.013 . Note that the rounded solu-

tion is not correct to two significant digits, even though each arithmetic operation was per-
formed with two significant digits of accuracy. This is what we mean when we say that
arithmetic operations tend to propagate rounding error.

In Example 2, by rounding at the intermediate steps we introduced a rounding error of

TECHNOLOGY —0.0132 — (—0.014) = 0.0008. Rounding error
NOTE . . .
= Although this error may seem slight, it represenpe@entage error of
You can see the effect of round-
ing on a calculator. For example, 0.0008 a0
the determinant of 00132 0.061 = 6.1%. Percentage error
A= [3 11] In most practical applications, a percentage error of this magnitude would be intolerable.
2 6 Keep in mind that this particular percentage error arose with only a few arithmetic steps.

When the number of arithmetic steps increases, the likelihood of a large percentage error

is —4. However, the TI-85 .
also increases.

calculates the greatest integer
of the determinant oA to be
—5:int det A = —5. Do you
see what happened? For large systems of linear equations, Gaussian elimination can involve hundreds of arith-
metic computations, each of which can produce rounding error. The following straightfor-
ward example illustrates the potential magnitude of the problem.

Gaussian Elimination with Partial Pivoting

EXAMPLE 3 Gaussian Elimination and Rounding Error

Use Gaussian elimination to solve the following system.

0.143%, + 0.35%, + 2.0, = -5.173
-1.31x, + 0.91%, + 1.9%, = -5.458
11.2, - 4.30¢, - 0.605; = 4.415

After eachintermediate calculation, round the result to three significant digits.
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Applying Gaussian elimination to the augmented matrix for this system produces th
following.

0.143 0.357 201 -5.17]
—-131 0911 199 -546
| 112 —430 —0.605 4.42]

100 250 141 —36.2 | ===  Dividing the first row

—131 0911 199 -546 by 0.143 produces a
i 11.2 —4.30 —-0.605 4.42_ new first row.
000 419 205 —529 | <= first row to the second row
11.2 —-430 —-0605 442 produces a new second row.
[ 1.00 250 141 —36.2] Adding —11.2 times the
0.00 419 205 —-529 first row to the third row
0.00 —32.3 —159. 409. <= produces a new third row.
[ 1.00 250 141 -36.2] Dividing the second row
0.00 1.00 489 —12.6| == by 4.19 produces a new
| 000 —32.3 —159. 409. | second row.
[ 100 250 141 _362 1 Addlng 323 times the
0.00 1.00 489 —126 second row to the third row

0.00 0.00 —1.00 200| -<e=— produces a new third row.

1.00 250 141 -36.2 Multiplying the third row
000 1.00 489 —126 by —1 produces a new
000 000 100 —2.00| <=  thirdrow.

Thusx; = —2.00, and using back-substitution we obtajr= —2.82 ane —0.950.
Try checking this “solution” in the original system of equations to see that it is not correct
(The correct solution ig;, = 1,x, =2, amnd = —3. )

What went wrong with the Gaussian elimination procedure used in Example 3? Clearl
rounding error propagated to such an extent that the final “solution” became hopelessly i
accurate.

Part of the problem is that the original augmented matrix contains entries that differ it
orders of magnitude. For instance, the first column of the matrix

0.143 0357 201 -517
—-131 0911 199 -546
11.2 —-430 -0.605 442

has entries that increase roughly by powers of ten as one moves down the column.
subsequent elementary row operations, the first row was multiplied by 1.31 and —11.2 ar
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Gaussian Elimination
with Partial Pivoting

the second row was multiplied by 32.3. When floating point arithmetic is used, such large
row multipliers tend to propagate rounding error. This type of error propagation can be less-
ened by appropriate row interchanges that produce smaller multipliers. One method for re-
stricting the size of the multipliers is call&hussian elimination with partial pivoting.

1. Find the entry in the left column with the largest absolute value. This entry is called
the pivot.

2. Perform a row interchange, if necessary, so that the pivot is in the first row.

3. Divide the first row by the pivot. (This step is unnecessary if the pivot is 1.)

4. Use elementary row operations to reduce the remaining entries in the first column to
zero.

The completion of these four steps is callegaas.After performing the first pass,
ignore the first row and first column and repeat the four steps on the remaining subma-
trix. Continue this process until the matrix is in row-echelon form.

Example 4 shows what happens when this partial pivoting technique is used on the
system of linear equations given in Example 3.

EXAMPLE 4

Solution

Gaussian Elimination with Partial Pivoting

Use Gaussian elimination with partial pivoting to solve the system of linear equations given
in Example 3. Aftereachintermediate calculation, round the result to three significant
digits.

As in Example 3, the augmented matrix for this system is

0.143 0.357 201 517
—131 0911 199 -546|.
11.2 —-430 —0.605 442

Pivot

In the left column 11.2 is the pivot because it is the entry that has the largest absolute value.
Therefore we interchange the first and third rows and apply elementary row operations as
follows.

11.2 —-430 —-0.605 442] <= Interchange the
-131 0911 199 -5.46 first and third
| 0.143  0.357 201 —-517| <= 'OV

1.00 —0.384 —0.0540 0.395] -==— Dividing the first row
—-131 0911 199 -5.46 by 11.2 produces a new
| 0.143  0.357 201 —517] first row.
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100 —0.384 —0.0540 0.395] Adding 1.31 times the first
0.00 0.408 192 —494 <= row to the second row
0.143 0.357 201 —-517 produces a new second row.
[ 1.00 —0.384 —0.0540 0.395] Adding —0.143 times the
0.00 0.408 1.92 —494 first row to the third row
0.00 0.412 202 -523 <= produces a new third row.

This completes the first pass. For the second pass we consider the submatrix formed
deleting the first row and first column. In this matrix the pivot is 0.412, which means that
the second and third rows should be interchanged. Then we proceed with Gaussian elir
nation as follows.

Piyot

[ 1.00 —0.384/ —0.0540 0.395] Interchange the
0.00 0.412 202 -523 <€ second and third

| 0.00 0.408 192 -494| —= rows.

[ 100 —0.384 —0.0540 0.395] Dividing the second row
0.00 1.00 490 —-12.7 <&— by 0.412 produces a new

| 0.00 0.408 192 —4.94 second row.

[ 1.00 —0.384 —0.0540 0.395] Adding —0.408 times the
0.00 1.00 490 —127 second row to the third row

0.00 0.00 —0.0800 0.240 <= produces a new third row.

This completes the second pass, and we can complete the entire procedure by dividing
third row by —0.0800 as follows.
[ 1.00 —0.384 —0.0540 0.395] Dividing the third row
0.00 1.00 490 -12.7 by —0.0800 produces a
000 0.0 1.00 —300| = newthirdow.

Thusx; = —3.00, and using back-substitution we haye= 2.00 andx, = 1.00, which
agrees with the exact solution ®f = 1,x, = 2, ard= —3 when rounded to three
significant digits.

REMARK: Note that the row multipliers used in Example 4 are 1:30,143, and
—0.408, as contrasted with the multipliers of 1.31, 11.2, and 32.3 encountered in Example :

The termpartial in partial pivoting refers to the fact that in each pivot search only entries
in the left column of the matrix or submatrix are considered. This search can be extends
to include every entry in the coefficient matrix or submatrix; the resulting technique is
called Gaussian elimination with complete pivoting.Unfortunately, neither complete
pivoting nor partial pivoting solves all problems of rounding error. Some systems of lineal
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equations, calledl-conditioned systems, are extremely sensitive to numerical errors. For
such systems, pivoting is not much help. A common type of system of linear equations that
tends to be ill-conditioned is one for which the determinant of the coefficient matrix is
nearly zero. The next example illustrates this problem.

EXAMPLE 5

Solution

An llIl-Conditioned System of Linear Equations

Use Gaussian elimination to solve the following system of linear equations.
X + y= 0
401
X+-—y=20
4007
Round each intermediate calculation to four significant digits.

Using Gaussian elimination with rational arithmetic, we find the exact solution to be
y = 8000 and x = —8000. But rounding 401/40& 1.0025 to four significant digits
introduces a large rounding error, as follows.

1 1 0]
11 1002 20|

1 0]
0 0002 20
11 0]
|0 1.00 10,000

Thusy = 10,000 and back-substitution produces
X= -y
= —10,000.

This “solution” represents a percentage error of 25% for botk-tadue and the-value.
Note that this error was caused by a rounding error of only 0.0005 (when we rounded
1.0025 to 1.002).
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In Exercises 1-8, express the given real number in floating point
form.

1. 4281
5. —0.00121

2. 321.61

3. —2.62 4.—21.001
6. 0.00026 H

7. % 8. 165
In Exercises 9-16, determine the stored value of the given real

number in a computer that rounds to (a) three significant digits and
(b) four significant digits.

11. —92.646
15.2

12. 216.964
163

9. 331
13. &
In Exercises 17 and 18, evaluate the determinant of the given

matrix, rounding each intermediate calculation to three significant
digits. Then compare the rounded value with the exact solution.

212 422
18. [1.07 2.12]

10. 21.4
14.5

1.24 56.00
17 [66.00 1.02]

In Exercises 19 and 20, use Gaussian elimination to solve the og

given system of linear equations. After each intermediate calcula-
tion, round the result to three significant digits. Then compare this
solution with the exact solution.

19. 1.21x + 16.7y = 28.8
4.66x + 64.4y = 111.0

20.144x — 17.1y = 315
81.6x — 97.4y = 179.0

In Exercises 21-24, use Gaussian elimination without partial pivot-
ing to solve the system of linear equations, rounding to three sig-
nificant digits after each intermediate calculation. Then use partial
pivoting to solve the same system, again rounding to three signifi-
cant digits after each intermediate calculation. Finally, compare
both solutions with the given exact solution.

21. x+ 104y = 204
6x + 6.20y = 12.20
(Exact: x =1,y =1)

X + 4.01y + 0.00445z = 0.00
—Xx — 4.00y + 0.00600z = 0.21
2x — 4.05y + 0.05000z = —0.385
(Exact: x = —0.49,y = 0.1, z = 20)

24, 0.007x + 61.20y + 0.093z = 61.3
4.810x — 592y + 1.110z= 0.0
81.400x + 1.12y + 1.180z = 83.7
(Exact: x=1y=12z=1)

22. 051x + 926y = 97.7
99.00x — 449.0y = 541.0
(Exact: x =10,y = 1)

23.

C [
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In Exercises 25 and 26, use Gaussian elimination to solve the
ill-conditioned system of linear equations, rounding each intermedi-
ate calculation to three significant digits. Then compare this solu-
tion with the given exact solution.

25.x+ y=2 26. X — ¥y =10
x+%y=20 X+ y=250
(Exact: x = 10,820, (Exact: x = 48,010,
y = —10,818) y = 48,060)

27. Consider the ill-conditioned systems
X + y=2 and Xx-+ y=2
X + 1.000ly = 2 X + 1.0001y = 2.0001.

Calculate the solution to each system. Notice that although
the systems are almost the same, their solutions differ greatly.

28. Repeat Exercise 27 for the systems
x—y=0 ad x—y=0
—1.001x + y = 0.001 —1.001x + y = 0.

The Hilbert matrix of sizen X n is then X n symmetric
matrix H,, = [a;], wherea; = 1/(i + j — 1). Asnincreases,
the Hilbert matrix becomes more and more ill-conditioned.
Use Gaussian elimination to solve the following system of
linear equations, rounding to two significant digits after each
intermediate calculation. Compare this solution with the exact
solution(x, = 3, x, = —24, and x; = 30).

1 1 _
X, 3% +3x=1

X 3%+ axg =1
Xt Xt ixg =1
30. Repeat Exercise 29 foH,x =b, whete= (1,1,1,1)",
rounding to four significant digits. Compare this solution with
the exact solutiorix, = —4, x, = 60, X; = —180, and x, =
140).

The inverse of then X n  Hilbert matrikl,, has integer en-
tries. Use your computer of graphing calculator to calculate
the inverses of the Hilbert matricet, for n = 4,5,6, and 7.

For what values ofi do the inverses appear to be accurate?



