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1 Introduction

Performing a complete reduction to Reduced Row Echelon form is not the
most efficient algorithm for solving linear systems. As we will explain be-
low, complete reduction is doing a bit more than necessary. Elementary
row operations are, however, at the heart of a large number of algorihtms,
especially the ones most frequently used in numerical (i.e., computer) appli-
cations. We will see how they can be used to write a matrix as a product of
two or more matrices with a simple structure. This is a common procedure
in algebra. E.g., factorizing a polynomial (which is equivalent to finding its
zeroes, or finding the solutions of a polynomial equation) is also writing an
arbitrary polynomial as a product of simple ones.The prime factorization of
an integer is another example. Later, we will encounter more applications of
factorizations of matrices, but for now our focus is on solving linear systems.

2 Upper and Lower Triangular Matrices

We start with a bit of terminolgy. A square matrix A = (a;;) is called upper
triangular if a;; = 0 for all 7, j such that ¢ > j. L.e., A is of the form

ai; a2 @13 -+ Q1p
0 axp as --- ag



Similarly, A = (a;;) is called lower triangular if a;; = 0 for all 4, j such that
1 < j. Le., A is of the form

a1 0 0 te 0

az  axp 0 0
A=|azn azxp a3z --- 0

Qp1 Qp2 Gp3 - Qpp

A is called a diagonal matrix if a;; = 0 if 4 # j. This is the same as saying
that A is both upper and lower triangular, and the only nonvanishing entries
of A are on the diagonal, i.e., for i = j.

Before we apply these notions to linear systems, we derive some useful
algebraic properties of triangular matrices. All matrices in the following are
n X n unless stated otherwise.

Theorem 2.1
i) A is upper triangular if and only if A" is lower triangular.
ii) If A and B are upper triangular, and ¢ € R, then
a) cA is upper triangular,
b) A+ B is upper triangular, and
b) AB is upper triangular.
iii) All properties of i) hold with upper triangular replaced by lower triangu-
lar.

Proof: The proof of ¢ follows directly from the definitions of upper and
lower triangular and the transpose of a matrix. The proofs of parts a and b
of 1 are easy. To prove c, we start from the definition of the matrix product.
If A = (a;;) and B = (b;;) are n X n matrices, then AB is the n X n matrix
with entries given by

(AB)ZJ = Z aikbkj.
k=1

As A and B are assumed to be upper triangular we have that a;; = 0 if
t >k, and by; = 0 of £ > j. In order to have a;;bx; # 0, one needs a;; # 0,
implying ¢ < k, and by; # 0, implying k£ < j. These two conditions can be
satisfied simultaneously only of ¢ < j. Therefore (AB);; = 0 if i > j. Hence,
AB is upper triangular.



The proof of i is most easily obtained by considering 4z with A replaced
by AT and B by BT, and then using i. n

As a side remark we mention that the properties ii.a-b show that the
upper triangular matrices form a subspace of the vector space of all n x n
matrices. With the additional property #.c we have that the upper triangular
matrices form a subalgebra of the algebra of all n x n matrices.

3 Back and Forward Substitution

Consider an n X n linear system of the form
Ax =b

with A an upper triangular matrix. To solve a linear system like that it is
not necessary to reduce it to Reduced Row Echelon form. Observe that the
last equation contains only the unknown x,, and has solution

if ay,, # 0. If a,, = 0, we must distinguish the cases where b, = 0 and
b, # 0. For concreteness, let is assume that all the diagonal elements of A
are nonzero. Next, we substitute the solution for z, into the second to last
equation, which then contains only the unknown z,_;, and which therefore
can be solved immediately as well:

bn—l — Ap—1,nTn

Tpn—_1 = .

anfl,nfl
The solutions for z, and x,_; can now be substituted in the equation #
n — 2, and so on until the complete solution has been found. This process is
called back substitution. Note that as an intermediate step in our algorithm
for reduction to RRE form, we obtain an upper triangular matrix that is row
equivalent to A. Back substitution allows one to stop the reduction at that
point and solve the linear system.

A similar procedure works when A is lower triangular. In that case the
first equation contains only z; and can be solved immediately:

b

a1

T =



Again, we assume that the diagonal entries of A are nonzero. By substituting
the solution for x; into the second equation, we get an equation with only x,
as unknown. The solution is

_ by — a1 71

T =
a22

This process can be continued, now in the forward direction, until finally one
finds

_ b= T
Ann '
This procedure is called forward substitution.

Next, we consider a linear system Ax = b, where now we assume that we
know a lower triangular matrix L, and an upper triangular matrix U, such
that A = LU. This is more general as such A need not be either upper or
lower triangular, while both cases are clearly included. Again, we can solve
the system without any reduction to RRE form. Define y = Ux, where z is
the as yet unknown solution of Ax = b. Then, y satisfies

Tn

Ly =b.

As L is lower triangular, we can solve for y by forward substitution (as long
as the diagonal entries of L are all nonzero). When we have obtained the
solution for y we remember that y was defined by

Uz =y,

with U upper triangular, which means that we can find = from y by back
substitution (again under the assumption that all diagonal entries of U are
NONZEro).

In conclusion, to solve Ax = b, it is suffcient to find L and U, which are
lower and upper triangular matrices respectively, such that A = LU. If the
diagonal entries of L and U are all nonzero, the solution of the linear system
is unique and can be found by simple foward and back substitution.

The simple procedures of back and forward substitution can also be re-
garded as an straightforward way to compute the inverses of lower and upper
triangular matrices. The only condition is that their diagonal entries are all
non-zero. The latter is indeed a necessary and sufficient condition for a tri-
angular matrix to be non-singular, as we will see later. Once the inverse of



L and U have been obtained the inverse of A itself can be found by the rule
for the inverse of a product:

Al=(LU)y ' '=U 'L,

4 LU factorization

From the foregoing it is clear that knowing a factorization of a matrix A
as a product of a lower and an upper triangular matrix, i.e., A = LU, is
indeed very useful. Such a factorization is called LU factorization or LU
decomposition. We will later prove that such a factorization, with L and U
satisfying the condition that they have no zero elements on their diagonals, is
equivalent to A, or a permutation of A, being non-singular. For simplicity, we
will now explain how such an LU factorization can be obtained in the most
frequent case where the reduction of A to RRE form does not require any
exchanges of rows. Row-exchanges can be included with a small additional
effort.

Not surprisingly, the factorization procedure itself involves elementary
row operations. Suppose A = (a;;) is an n X n matrix with a;; # 0. The
first step in our algorithm for reduction to RRE form is then the ERO which
replaces the 2nd row by the 2nd minus the first multiplied by as;/a;;. This
leaves us with the matrix

a11 a2 a13 o Aip
A 0 a2 — a12a21/a11 a23 — G13021/G11 ccc Agp
1 =

a3 asz a33 SR ¢ £:77)

The new trick comes now. The ERO we just performed on A can be viewed
as the multiplication of A from the left with the lower triangular matrix E,
defined by

1 0o 0 --- 0

—agl/an 1 0 0

E12 == 0 0 1 0
0 0 0 1

You can easily verify that



Next, the ERO which replaces the 3rd row by the 3rd row minus a multiple of
the first such that the first element of the 3rd row vanishes, can be obtained
by left multiplication of A; by

1 o0 -0
0 10 0
E13 = —0,31/6111 0 1 0
0 00 --- 1

which is also lower triangular. A, := Ej3A; then has a 0 in the position 13.
It is now clear how to define matrices E; such that

An—l = ElnEl,n—l e E13E12A

is the result of n — 1 ERO’s applied to A, and has all zeroes in the first
column except for the top element. Next, we proceed with more ERO’s to
make the elements of the 2nd column under the diagonal vanish. This can
be achieved by left multiplication with lower triangular matrices of the form

(1 0 0 --- 0
0 1 0 --- 0
0

]
[
o

0 —an'/aSQ)
\o 0 0 - 1)

where a%) is the 22 element of Ay, i.e.,

a%) = Gy — 12021/ a11-
We assume again that aglz) # 0. One can continue in the same way with
ERO’s to make the elements under the diagonal in the third column vanish,
and the 4th, and so on until eventually we obtain an upper triangular matrix

that is row equivalent to A. Denote this matrix by U. The above procedure
then shows that

U= En—l,nEn—Z,n—lEn—Q,n Tt E23E1n T EIQA; (41)



where all the E;; are lower triangular matrix matrices.

The next step is to notice that the inverses of the E;; are lower triangular
matrices of the same form. Simply change the sign of the only non-vanishing
off-diagonal element. E.g.,

1 0 0 0

021/0,11 1 0 0

Eyl = 0 01 0
0 o0 --- 1

By using the inverses of all E;; we can solve back for A from (4.1) and obtain
A=LU

with
I = E1_21E1_31"‘E1:11E2731"‘E71

n—1,n"

From the theorem in Section 2 it follows that L is lower triangular as it is a
product of lower triangular matrices. We have thus obtained a factorization
of A as a product of lower triangular and an upper triangular matrix.

When this procedure is implemented in a computer program, one does not
actually perform this large number of matrix multiplications with matrices
that are mostly zeroes anyway. Each time only one row of the matrix is
modified and this is easily programmed directly. By writing the procedure
as a matrix product, however, we were able to see that it indeed leads to an
LU factorization of A.

A procedure to obtain the LU factorization manually is described in Sec-
tion 9.3 of Kolman.



