CE 441 - Lecture 19 - Fall 2000

LECTURE 19
GAUSS QUADRATURE

* In general for Newton-Cotes (equispaced interpolation points/ data points/ integration
points/ nodes).

Xg

If(x)dx = hlw fo+w f +...+w fyl+E

fN

-«— closed formula

« Note that for Newton-Cotes formulae only the weighting coefficients  were unknown
and thex, were fixed
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* However the number of and placement of the integration points influences the accuracy
of the Newton-Cotes formulae:

« N even . Nt degree interpolation function exactly integrates na 1t" degree
polynomial - This is due to the placement of one of the data points.

* N odd -~ Nt" degree interpolation function exactly integrateshih degree polyno-
mial.

» Concept: Let's allow the placement of the integration points to vary such that we
further increase the degree of the polynomial we can integrate exactly for a given
number of integration points.

 In fact we can integrate areN + 1 degree polynomial exactly with omly+ 1 integra-
tion points
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e Assume that for Gauss Quadrature the form of the integration rule is

X
IEf(x)dx = [w, fo+w, fo+...+wy f ] +E
Xs

fN
fO ¢
®
f3
fl ®
f
i | I i
Xs X0 X1 X2 X3 XN Xe

* In deriving (not applying) these integration formulae

* Location of the integration pointsg i = O, N are unknown

e Integration formulae weightsy, i = O,N  are unknown

* 2(N+1) unknowns- we will be able to exactly integrate argN +1  degree polyno-
mial!
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Derivation of Gauss Quadratue by Integrating Exact Polynomials and Matching

Derive 1 point Gauss-Quadrature

« 2 unknownsw, x, which will exactly integrate any linear function

» Let thegeneralpolynomial be
f(x) = Ax+ B
where the coefficients, B can equal any value

 Also consider the integration interval to pet, + 1]  such that -1 and +1 (no
loss in generality since we can always transform coordinates).

+1
J’ f(x)dx = wy f(x,)
-1

« Substituting in the form of (x)

+1
J’(Ax+ B)dx = w (Ax,+B) O
-1
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X2 *1
[A—Z— " Bx} | = Wo(A%+B) O

A(0) +B(2) = A(X,W,) + B(w,)

 In order for this to be true fary 1st degree polynomial (i.e. any aBd ).

[0 = X,W,
[]
R = w,

» Thereforex, = 0 w, = 2 for 1 poinfN =1) Gauss Quadrature.

\io\<
)

-1 X0 +1

* We can integrate exactly with only 1 point for a linear function while for Newton-Cotes
we needed two points!
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Derive a 2 point Gauss Quadraturedfmula

The general form of the integration formula is
| =w, fo+w fy

* W, X,, Wy, X; are all unknowns

4 unknownsa we can fit a 3rd degree polynomial exactly

f(x) = A3+Bx2+Cx+D

Substituting in forf (x) into the general form of the integration rule

+1
J’ f(x)dx = wy f(x,)+w; f(xq)
-1

N

p. 19.6
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+1
[ [AX+Bx2 + Cx+ D]dx = W [AX+BX2 +Cx, +D] +W,[Ax§ +BxZ +Cx, +D]
1

]

+1
+Dx} = W (AXZ +Bx2 +Cx, +D)+w,(Ax§ +Bx +Cx, +D)
1

[Ax4 N Bx3 N Cx2
4 3 2

[

A[W xS +wyx3 ]+ B[woxg + Wy X% —%} + C[ W X, + Wy x;] +D[w,+w;—2] = 0

* In order for this to be true faany third degree polynomial (i.e. all arbitrary coefficients,
A, B, C, D), we must have:

3 3 =
woxg +wyxy =0

2 2 _2
W X§ + Wy X{ 3" 0
WX, + WX, =0
Wy +w,—2 =

p. 19.7
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* 4 nonlinear equations 4 unknowns

w,=1 and w; =1

Xo:_,\/% andx1:+£

 All polynomials of degree 3 or less will bexactlyintegrated with a Gauss-Legendre 2
point formula.
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Gauss Legendre érmulae

+1 N
| = J'f(x)dx: Zwi f.+E
-1 i=0

X., Exact for
N N+1 _ W, polynomials of
I =0,N degree
o) 1 o) 2 1
1 2 1 1 1,1 3
— = 4 |Z=
545
2 3 -0.774597, 0O, 0.5555, 0.8889, )
+0.774597 0.5555
N N+1 2N +1
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 Notes

* N + 1 = the number of integration points

* Integration points are symmetrical pr, +1]

* Formulae can be applied on any interval using a coordinate transformation

* N + 1 integration points. will integrate polynomials of up to degre +1  exactly.

 Recall that Newton Cotes. N+1 integration points only integrates an
Nth/N + 1th degree polynomial exactly depending 8in being odd or even.

» For Gauss-Legendre integration, we allowed both weights and integration point
locations to vary to match an integral exactlymore d.o.f.0 allows you to
match a higher degree polynomial!

» An alternative way of looking at Gauss-Legendre integration formulae is that we
use Hermite interpolation instead of Lagrange interpolation! (How can this be
since Hermite interpolation involves derivativeset’s examine this!)
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Derivation of Gauss Quadratue by Integrating Hermite Interpolating Functions

Hermite interpolation brmulae

* Hermite interpolation whicimatchesthe function and the first derivative Bit+ 1 inter-
polation points is expressed as:

N N
90 = ¥ a()fi+ Y BofY
i=0 =0

(1) (1) (1)

(1) (1) (1) (1)
fo fo fofy ™ fofy™ f3f3 fafy f5f5 VLY
@ @ @ @ @ @ o
0 1 2 3 4 5 N
X0 X1 X2 X3 X X5 XN

* It can be shown that in general for non-equispaced points

a;(x) = () Ly()hiy(X) 1 =0,N

Bi(x) = s()lin)lin(x) 1= 0N

p. 19.11



where

PN (X) = (X=X5) (X = X) -+ (X = Xy )

() = i i = 0,N

(x= %) Bx)

t(x)=1-(x-x) 2 15x)

§(X) = (X=x)

p. 19.12
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Example of defining a cubic Hermite interpolating function

» Derive Hermite interpolating functions for 2 interpolation points locatedlat -amnd
for the interval[-1, + 1] .

1
D M

fofo 1y
l I ..

XO:—]. X1:+1

N+1=2 points 0 N=1

« Establishp,(x)
p(X) = (X=X)(x=%) O

PO = (x= %) + (x=x)

p. 19.13
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« Establishi;(x)

() = (x—ﬁztg;)l)(xi)]

i1 (x) = (X_Xi)(E((;iX_O)X(O);:)((i)i—xl)]
eLeti =0

0109 = (X_(io_)[xé)fx(x_ox_l)xl)]

000 = o

e Substitute inx, = -1 and; = +1

l.(X) = %(1—x)
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eleti =1

(X=X%,) (X=X

(X=X [(Xy =X%g) + O]

l11(x) =
« Substitute in values fot, x;
1

112(%) = §(1+X)

» Taking derivatives

(1 1
) = -3
@, _ .1
I11()()_+2

p. 19.15
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« Establisht;(x)
() = 1-(x=x)21 %) O
to(X) = 1-(x+ 1)(2)F- 2D .
t,(X) = 2+
() = 1-(x=x) 21(x) O

() = 1-(x-1) E%B .

t;(x) = 2-X

« Establishs,(x)
So(X) = x+1

S(x) = x-1

p. 19.16
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« Establisha;(x)

a,(x) = t,(X) o (X)51(x) O

o (X) = (2+x)%(1—x)%(1—x) 0

a,(x) = %1(2—3x+x3)

a(x) = ty (X)) (X)4(x) O

o, (X) = (2—x)%(1+x)%(1+x) .

o, (x) = %1(2+ 3x — x3)

p. 19.17
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 Establishp;(x)
Bo(X) = so(X)M1(X)Moe(x) O

Bo(X) = (x+1)5(1-X)3(1-%) T
1

Bo(x) = Z(l—x—x2+x3)

B1(X) = s (X)11(X)11(x) O

B,(x) = (x—l)%(1+x)%(1+x) 0

B,(x) = %1(—1—x £ X2+ x3)

* In general

9(x) = 0o(x) Fotag(x) f1+Bo(x) £ +py(x) £

p. 19.18
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ai(x) a; (%)
A

@(w L
! - X

1 > = X
1 +1 -1 /+l

B A
A

-1 V1 -1 =

Bi(x)

» These functions satisfy the constraints
1
ai(x)) = 3 a(x) =0

Bi(x;) = 0 CHNERS

p. 19.19
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Gauss-Legendre Quadrature by integrating Hermite interpolating polynomials

+1 N
| = If(x)dx: zwi f.+E
-1 i=0

* Notes
» Use[-1, +1] without loss of generalityl] we can always transform the interval.
» Approximation forl is exact foEN+1 degree polynomials

* We can derive all Gauss-Legendre quadrature formulae by approximigting with an

2N + 1th degree Hermite interpolating functiarsing N specially selecteshtegration/
interpolation points.

+1
| = jg(X)dX+ E
-1
where

N N
90 = ¥ o)+ T B
i=0 i=0

p. 19.20
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 Thus

+1- N N

=[S afi+ Y B.(x)f M |dx+E
—1Li=0 i=0

0

N N

= YA+ 3B f)+E
i=0 i=0

where

+1 +1

A = J’lai(x)dx and B, = J’lﬁi(x)dx

e Furthermore we can show that

+1- 2 (X)
N+1 1:(2N + 2)(X

E = Il (2N + 2)!

o) + H.O.T.|dx

p. 19.21
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» Note that we are assuming Taylor series expansions aout  and using higher order
terms in the expansion.

* ThereforeE = 0 for any polynomial of degres +1  or less!

 The problem that we encounter is that the integration formula as it now stands
generalrequires us to know both functional and first derivative values at the nodes!

 Let us seleck,, x;, x,, ...y Such that

B,=0 1=0N O
+1
J'Bi(x)dx: O i =0N O
-1
+1
[SONniy(9dx =0 i =0N 0
-1
" pu(X)
(X—X) N o (X)dx =0 i=0N @O
_Il (x=x)pilx)

p. 19.22
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+1
1 .
pPy(X)y(X)dx =0 i =0,N
TR

py(X) O polynomial of degre®\ + 1

lLy(X) O polynomial of degresl
» Therefore we requir@,(x) to be orthogonalesl, +1]  atbpolynomials of degreé

or lessao any multiple of Legendre-Polynomials will satisfy this.

e Let

N+1 2

where
Pn(X) = (X=X ) (X=X (X=X5) ... (X=Xy)

Py +1 = the Legendre polynomial of degrisier 1

ON+I[(N + 1)!]2
[2(N+1)]"

IS required to normalize the leading coefficienPQf, ;(x)
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« What have we done by defining,(x) inthisway we have selected the integration/
interpolation/data points,, x,, ...xy to be th@otsof P, ,(x).

* In general
_ 1 dn(x2-1)"
P = S
P,(x) =1
P,(X) = x

P,(X) = %(3x2—1)

P4(X) = 5(5x*~3X)

p. 19.24
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e So far we have established

 Selectingp,(x) to be proportional to the Legendre Polynomial of detyred O
this satisfies the orthogonality condition which will lead to:

+1

J’Bi(x)dx =0
-1

As a resultfi(l) terms wilhot appear in the Gauss-Legendre integration formula.

* If we selectp,(x) to be the Legendre Polynomial of degkeel 0O the roots of

that polynomial will represent the interpolating/integration/data points since
Pn(X) = (X=x)(X=X%,)...(Xx—Xy) has been set equal @, , ,(X)

« Now we must find the weights of the integration formula. Note that  will represent the
weights!

+1
A = J’ai(x)dx 0
-1

p. 19.25
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+1

A = J’ti(x) L (X) 1 (X)dX
-1

where

t(x) = 1-(x—x) 2 18x)

lin(X) = pN()(?

(x=%) py1%)

PN(X) = (X=X) ... (X=Xy)

and wherex,, ..., x,, are th@otsof the Legendre polynomial of degree-1  or

N+1 2

p. 19.26
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Two point Gauss-Legendre integration

Develop a 2 point Gauss-Legendre integration formul@-for+1] . Let

1 1
g0 = ¥ a(9f+ T BT

1=0 1=0

g(x) = o (X)fo+ay(x)Fy+By(x) 7 +B,0x) 1Y
e Thus

+1
| = Ig(x)dx+E 0
-1

+1 +1 +1 +1
| = Iao(x)fodx+J'al(x)fldx+J'Bo(x)ff)l)dx+J'Bl(x)f(ll)dx 0
-1 -1 -1 -1

+1 +1 +1 +1
= fo[ao(dx+ fy [ay(x)dx+ fglq B (X)dx + f(ll)I B,(x)dx
-1 -1 -1 -1

p. 19.27
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Step 1 - Establish interpolating points

* Interpolation points will be the roots of the Legendre Polynomial of order 2.

P,(X) = %(3x2—1) .

%(3x2—1) -0 O

3x2 =1 0O

p. 19.28
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« Checking these roots

1 d2(x2—1)2

2221 dx? -

P,(Xx) =

1d?

4 2
8dx2(x —-2xc+1) O

P,(x) =
_ 1 >
P,(X) = é(lzx —-4) O

Po(X) = 5(3x2-1)

22(21)2

P1(x) = 2(2)! P,(x) O

p,(X) = 4EBD2E%(3X2 1) O

= x2_ =
P1(X) = X 3

p. 19.29
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« From formula which defineg,(x) using the integration points
_ 1 10 _ 1
p]_(X) - %-F/\/é%(_/\/%l] - Xz—é

Step 2 - Establish the coefficients of the derivative terms in the integration formula

* Let's demonstrate that with the roo4s, = +0.57735  we will satisfy

+1 +1
IBo(x)dx =0 and J’Bl(x)dx =0
-1 ]

e First develop B,(x) and B,(x) by developingp,(x), p\”(x), 1,,(x), 114(x),
So(X) and s;(X)

P1(X) = (X=%) (X=X

i) = (x=x) + (x=%)

p. 19.30
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P1(X)
(x=x) X))

lj2(x) = =010

(X = X) (X=Xq)

Ijl(x) = (X— XJ)[(XJ _XO) + (XJ _Xl)]

(X =X%,) (X=X,

Iol(x) = (X—Xo)[XO_X0+XO_X1] .
|01(X) - )z(__))((ll
B (X=X%5) (X =X1)
l11(x) = (X = %) [(Xg = X,) + (X —X1)] -
X —
lll(X) ) X1 _))((oo

p. 19.31
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So(X) = X=X,

$1(X) = x=X;

* Now we can establisp,(x)

Bo(X) = 85(X) 151(X) 1o2(x) O

x1 X=Xy
[k, —x,U

Bo(X) = (x- xo)& -

* Noting thatx, = _ﬁ Xy = ﬁ

o= G
L

Bo(X) = g[x3—£x2 =X+ Dm}

p. 19.32
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 Similarly for B,(x)
B1(X) = s1(X) 111(x) 111(X) O

(X=%5) D(x— X5)

(Xl - Xo) (Xl - Xo)

B1(X) = (X=X%q)

e Substitutingx, = _J% X, = J%
J- S [ % . i

B.(x) = O

45" 3
D’S/Z

By(x) = [x3+ﬁx2 3 B0 }

p. 19.33
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+1
 Now we can develo!ti_l B, (x)dx

+1 +13 /2
I_lBo(x)dx = I_lz[x3—éx2—§x+%g de O

[es00a = 322056 Le 0N g
-1 -1

+ 12 /2 12
LiBO(X)dX = S[Dl A0 1, do' o Dl+|31‘g

Ijﬁo(x)dx = 0

p. 19.34
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. DeveloijBl(x)dx

+1 +13 1 1 /2
I_lﬁl(x)dx = J’_lzl[x3+£x2—§x—%g de O

+1 _ 3rx4 DlD?»/Z 1 DlD?»/Z +1
I B,(x)dx = Z[Z+E§D XS_éXZ_EED x}_l 0

(ipooc- o0 "3BT B 8- -1

-1 4/ Th B0 6 [BD O i [B E:

p. 19.35
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« Now our integration formula reduces to:
= f (o (0dx+ [ ay(x)d
= +
0I_loto(x) X 1‘[_10(1(x) X 0O
| = A f +A T,
where

+1 +1
A EI_lo(o(x)dx and A15I_10‘1(X)dx

(6]

Step 3 - DeveloppA, A,

« Establisha(x)

ay(x) = ty(X) I4(X) 1;(x) O

a () = [1—(x=x%)210% ) 11, ()1 ,(x) O

p. 19.36
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o (x) = Ea—(x—xo)[
]

2 J%f—
Xo = X1 o}

DDI:I

— %,k — x, 1

- A [

L0

30

SEEEE

ay(x) = %ﬂ % [%7% 2£x+%gm

3ﬁ3D2
4 Dﬁs

ay(x) =

3 [] 121
o (X) = Zf?,%p<3—x+ Z%g E

p. 19.37
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. Developfiuo(x)dx

+

I_iao(X)dx = Ij[%ﬁ%(3—x+ Z%glzadx O

+1 _ 3 a4 X2 2
[ aa()dx = 4J§[Z_E+2EBD xL 0

L _3 gt 1, Ao 1 ,rif?
[, 00000k = 38 =3+ 257 G540 0 °

+ _ 3 117
I_lo(o(x)dx = 4ﬁ%&@ 30 O

+

1
Ilao(x)dx =1 0O

A, =1

o

p. 19.38
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.. 1
 Similarly we can show that, = flal(x)dx =1

* Thus we have established the two point Gauss Quadrature rule

+1
| = I_lf(x)dx =w, fo+w;

where x, = —ﬁ andx, = +£ are the integration points andv, = w; = 1

» \We note that this integration rule was established by defining a Hermite cubic interpo-
lating function and defining the integration poirisx, ,  such that

+1 +1
I-lBO(X)dX =0 and _1[31(x)dx =0

» Therefore the functional derivative values drop out of the Gauss Legendre integration
formula!

p. 19.39
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	• Similarly we can show that
	• Thus we have established the two point Gauss Quadrature rule
	where and are the integration points and
	• We note that this integration rule was established by defining a Hermite cubic interpolating fu...
	and
	• Therefore the functional derivative values drop out of the Gauss Legendre integration formula!





