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NUMERICAL ANALYSIS

When handling problems using mathematical techniques it is usually necessary to establish a
model, and to write down equations expressing the constraints and physical laws that apply.
These equations must now be solved and a choice presentsitself. One way isto proceed using
conventional methods of mathematics, obtaining a solution in the form of a formula, or set of
formulae. Another method is to express the equations in such a way that they may be solved
computationaly, ie by using methods of numerica analysis. This will lead directly to
quantitative results, however if enough such results are obtained then qualitative results may
emerge. Using these methods, large and complex physical systems may be modelled, and
otherwise intractable problems can be solved with the help of modern computer systems.

I nterpolation

We sometimes know the value of afunction f(x) at a set of points, without knowing the analytic
expression for f(x) that would allow us to calculate its value at some arbitrary point. Often the
points at which we know the value of f(x) are equally spaced, but not aways. The task is to
estimate f(x) for a given value of x by, in some sense, drawing a smooth curve through (and
perhaps beyond) the known values. If the desired value is in between the smallest and largest
x-values aready know, then the process is called interpolation. If x isoutside that range, it is
called extrapolation, which is considerably more hazardous. As a simple illustration, let us
consider linear interpolation.

Before the advent of computers, if it was required, for example, to find the square root of a
number x, a table of such numbers was consulted. If the number did not appear in the table,
then the two numbers above and below x were used, and interpolation provided the solution.
For example, suppose we wanted the square root of 2.155 and had a table such as shown
below:

n S
2.140 1.46287
2.150 1.46629
2.160 1.46969
2.170 1.47309

The difference between the square roots of 2.15 and 2.16 is 0.0034. Since 2.155 is half-way
between 2.15 and 2.16 we could assume that its square root was half-way between the square
roots of 2.15 and 2.16. Thisgives 2.155 = 1.46799.

Had we wanted 2.153 we would have added 0.3 times 0.0034 to 2.15. Thisis the process of
LINEAR INTERPOLATION, in which we assume a linear variation between the two known
values to predict intermediate values.

Suppose we have a set of m numbers x,, X, , Xs,..., X, and that corresponding to each x; thereis
a 'y, wherey and x are related by some function f: y = f (x). If wearegiven avalue of x (not
equal to one of the x;) we want to find avalue of y obtained by linear interpolation. Naturally
we assume some functional relationship does indeed exist between x and y, and it is our
responsibility to ensure that thisis a valid assumption. Suppose that the required value of the
variable x falls between the kth and k+1th known values of x [we assume that the X's are
ordered in an ascending sequence so that x; < X, < X, <...< X_]
\ X, EXE Xy



BSc 2 Computing Mathematics/ Computing Maths with Business Studies- Mathematical Techniques

and we want to calculate the corresponding value of y. To do this, we draw a line segment
joining the points (X, Vi) ad (X1 Vi)

Y _—
k+1
y
Yk
Xy X X1

We then find the point on that line with an x-coordinate of X .
The equation of the line through (X,, Vi) ad (X4, Vi) isfound by equating the Slope of AB
to that of BC:

Y- Yk - Yia™ Y \ y=vy, +(X_ Xk)(ykﬂ_ yk)
X=X Xia1 = Xy K™ X

i.e

Therefore, to find the required value of y weinsert X for x:

()_(' Xk)(yk+1' yk)
X = X

\ Y=yt (*)

Consider asimple example:
Suppose we have tabulated the values of y = x> for all integer x. Find 6.5 .

X, =6, ¥, =36, X.u=7, VY, =49 and X =6.5

, (65- 6)(49- 36)

Usng (*) =36 =36+05" 13=425

The correct value of 6.5 is42.25 theerror ET =-0.25.
[Error = true value - calculated valug].
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A General Approach to I nterpolation

We could investigate methods of interpolation using higher order polynomials, but athough
quadratic interpolation, for example, is likely to be more accurate than linear interpolation, it
is by no means certain to provide sufficient accuracy all the time. We need to develop a
general method which will also enable extra accuracy to be attained without having to resort to
anew set of calculations. In order to do this we need to introduce the idea of a difference
table.

Difference Table

As before, suppose that we have a set of values of an unknown function vy,,y,,Ys,..., Y,
corresponding to a set of values of the (known) independent variable x,,x,,X;,..., X, where
Xy < Xy < Xy <. <X,

A reliable formula for interpolation, to obtain the value of y corresponding to any x (where
X, < X, < X <...< X,) will employ &l the given information - ie it will be based on the values
of the ntl data entries. Instead of using these directly it is more convenient to use
rel ationships dependent on these values. The relationship

Yiir ™ Wi

iscalled the first difference of y,, denoted by Dy, : DYy, =V...- Y,

Similarly, the relationship Dy ,, - Dy, isthe second differencee Dy, =Dy, -

r

For example, Dzyo =Dy,- Dy, = (yz - y1) - (yl' yo) =Y, 2y, + Y,

Similarly D2y1:D)/2' [le(ys' yz)' (yz' yl):ys' 2y2+y1
In general terms: DY, = Vrip- 2Yis + Y, r=0,12,..,n- 2
Thethird differencesare DY, =Y. .5~ 3V, +3Y,..- Y, r=012..,n-3
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Clearly, successive differences can be calculated and put into a table such as that shown
below:

X y Dy Dy Dy D'y Dy
X; Yo

Dy,
X Yi Dz Yo

Dyl D3 Yo
X, Y, o Dy, D'y,

2 D'y, By,

X3 y3 D2 y2 Dd yl

Dys Dgy2
Xy Ys D Vs

Dy,
X5 Ys

The polynomial interpolation formula, dependent on the n+1 entries, can be expressed in terms
of these differences.

X y Dy Dy Dy
0 -2
1
1 -1 2
3 0
2 2 2
5 0
3 7 2
7 0
4 14 2
9 0
5 23 2
11
6 34

In this example, al the differences after the second are zero. Thisis no coincidence - the nth
differences of an n-degree polynomial are always constant, higher differences being zero.
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Errorsin aDifference Table

The first step in any interpolation procedure is the formation of a difference table from the
given data. Since this often involves a large number of additions and subtractions it is an
inevitable source of error. It is of interest to note how errors propagate in a difference table.
Supposey issubject to an error :

X y Dy Dy Dy
X, Yo
Dy,
Xy Y1 D2y0
Dy, D'y, +e
X Y Dy, +e
Dyz +te Wyl - 3e
X3 Y;+e Dy, - 2e
Dy,- e D3y2 +3e
X Ya Dy, +e
Dy, Dy, - e
X5 Ys Dy,
Dys
Xs Ye

The error in the third difference column, for example, appears in four terms, with error
coefficients given by the binomial coefficientsof (1- €)° .

The Newton-Gregory I nterpolation Formula

The unique polynomial satisfying any n+1 valuesis of degree n:

P(X) = Ay + AX+ AXE +..t AX"

The n+1 constants Aj being found from the n+1 linear equations obtained by substituting in the
data.

The Forward Interpolation Formula
Suppose the (n+1) values are (xj,yj) i=0,1,2,...,n. We can write the polynomial as:

p(X) =a0+(x- Xo)a1+(x' Xo)(x' Xl)aZ *.o.

If the equal intervals between successive valuesish, then x. - x. =(r - s)h.
We then have the n+1 equations for the g:

Y. =a,+rha +r(r- Hh’a, +...+r(r- H(r - 2)...(r - n+h"a,

=a0+é r(r-D(r-2)..(r-t+1)h'a, with r =0,...,n

t=1
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Forming successive differences gives:

DY, = Y- ¥ =ha +Q t{r(r- (r- 2)..(r- t+2)}ha,

t=2

Dzyr = Dyr+1_ D.Vr = 2h2a2+én. t(t - 1){r(r - 1)(r - 2)(r - t+3)}htat

D'y, = Dy,.,- Dy, :3>Qh3a3+§ t(t- 1(t- 2){r(r- H(r - 2)...(r - t+4)}ha,

t=4
D'y, =(n- D!h™'a, , +{n(n- 1)(n- 2)...2}rh"a,
D'y. =nlh"a,

From the above set of equations we may show that:

Q=Y
a, = By,/h

a, =D'y,/(2'h?)
a, = D'y, /(3h%)

X

a, =0y,/(nth")

and hence the polynomia is p(x) =y, + x-hxo Dy, + (x- Xor)lgx' X) D;VJ,_“

if wewrite x- x,=kh  where O£k£n then

P(X) = Yo + KDy, +k(k - 1)%+...+ k(k - D(k- 2)...(k- n+1)%

By looking at the difference table we can see that this formula uses the vaues aong the
diagona of the differences of y - it isa FORWARD DIFFERENCE formula. It is therefore
used for interpolation near the beginning of atable where k is small.

Since the coefficients are binomial the formula may be written

n

y@YO"'é kCr Dy,

r=1
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Example (i)

(i) Inthefollowing table, use the Newton-Gregory Forward Interpolation formulato find
@ f(24) (b) 1(8.7).

X 2 4 6 8 10
f(x) 9.68 10.96 12.32 13.76 15.28

Solution Form adifference table and note that all differences > 2 are zero.

X y=Ff(X) Dy Dy
2 9.68
1.28
4 10.96 0.08
1.36
6 12.32 0.08
1.44
8 13.76 0.08
1.52
10 15.28

(@ x=24, x =2, h=2;, k=02

24-2. 0, (24- 2)4(2.4- 4y, 0.38

weget f(2.4) @9.68+

so f(2.4)€9.68+0.2" 1.28+0.1" (-16) " 0.04= 9.9296
(b) Xx=87, x =2, h=2, k=335

weget f(8.7) €9.68+3.35 1.25+335 2.35° 0.04=14.2829

Example (ii)

In the following table of eX use the Newton-Gregory formula of forward interpolation to
calculate

(a) e0.12 ’ (b) e2.00.

X 0.1 0.6 11 1.6 21
eX 11052 18221 3.0042 49530 8.1662

Solution: Form adifference table.
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Note that in this case there is no difference column that is constant. This is to be expected
since eX cannot be represented by a polynomial function of finite degree.

X y=eX Dy Dy Dy D'y
0.1 1.1052
0.7169
0.6 1.8221 0.4652
1.1821 0.3015
11 3.0042 0.7667 0.1962
1.9488 0.4977
16 4.9530 1.2644
3.2132
2.1 8.1662

(8 Withx=012, x5 =0.1, h=05, k=004

0.4652

\ e™? @L1052+0.04" 0.7169+0.04" (- 0.96)

0.3015 0.1962

+0.04" (-0.96) " (- 196) +0.04" (-0.96)" (-196)" (-2.96)—

\ €012=1,1269 (correct valueto 5 d.p. is 1.12750)

(b) x=2 X%=0.1, h=05, k=38
€? € 11052 +2.72422 +2.47486+0.96239 + 0.12525

\ e® @7.3919 (to4 dp). (correct value 7.3891 to 4 dp)

In Example (i) the interpolation formula is identical with f(x), which is a quadratic function,
and the results for f(2.4) and (8.7) will therefore be correct to the number of decimal places
retained.

In example (ii) the function X is replaced by a 4th degree polynomial which takes the value of
eX at the five given entries. Because the successive difference decrease, higher differences are
relatively small and the value of the estimate converges. From direct calculation it turns out
that the error in the estimate for €*** is about 0.05 percent and for €% it is about 0.04 percent.
It is important to note that interpolation may not always yield a valid result. Consider the
following example:

10
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Example (iii)

Use the Newton-Gregory forward interpolation formula to estimate f(2.5) from the following
data:

24 120

=
N

X
f(x)

Solution: Form the forward difference table:

X y=Ff(X) Dy Dy Dy D'y
2 1
1
3 2 3
4 11
4 6 14 53
18 64
5 24 78
96
6 120

Withx =25, Xg=2, h=1thenk = 0.5 and we obtain
f(2.5) @1+ 0.5-0.375 + 0.6875 - 2.0703 = -0.2578.

The function f(x) in this example happens to be the GAMMA FUNCTION written

C(x) =(x- D!
providing x is a positive integer.

In fact the value of f(2.5) is known to be 1.3293, and the value estimated by interpolation is
obviously incorrect. The reason for this is that the successive differences are increasingly
rapidly and the series obtained from the formulais divergent. The values of f(x) are increasing
so rapidly that it is not possible for a fourth-degree polynomial to represent the function
accurately even though it is exact at the five given values. In other words, there is not enough
information given - it is necessary to fix the value of the function at more closely spaced
intervals of x sinceit isvarying so rapidly.

11
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The Newton-Gregory Backward I nterpolation For mula

The formula derived in the previous section is appropriate when the required value (Xo,Yo)
lies near the beginning of the tabulated data. When (Xq,Yo) is near the end of the table, it is
necessary to find a polynomia satisfying the (n+1) values (xj,y-j), i=0,1,2,...,n. This may be
achieved in aparalel manner to the previous section. It follows that the backward formulais

N2 NE NI
y= (%) @yo+kNyo+k(k+1)%+k(k+1)(k+2)%+...+k(k+1)...(k+n- 1)%

which may aternatively be written as

k(k+1)(k+2)...(k- r+1)
r!

y @y, + é. k“_lcrNr Yo where kH_lCr =

r=1

The following table shows the paths of the forward and backward interpolation formulae
through the difference table for n = 5.

X5 Y.s
X4 Y4
X 3 Y3 Backward
N® Yo
X2 Y2 N* Yo
N? Yo
X1 Y - N? Yo
Ny,
Xo Yo
By,
X Y1 D Yo
D Yo
X, Y> D' Yo
D Yo
X3 Y3 Forward
Xy Y,
X5 Y5

12
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Example

200

Apply the backward formulato find €= in Example (ii) of the previous section.

X y=e2.00 Dy Dy Dy Dy
0.1 1.1052
0.7169
0.6 1.8221 0.4652
1.1821 0.3015
11 3.0042 0.7667 0.1962
1.9488 0.4977
16 4.9530 1.2644
3.2132
2.1 8.1662

Wehave: x =20, Xo=2.10, h=05andk =-0.2

12644 0.4977 N

e’ @8.1662- 0.2° 32132- 0.2° 0.8" -02° 08" 18

=7.3920.

It has been observed that the two Newton-Gregory formulae use the information in the
difference table obtained by proceeding through the table along different paths. Both formulae
will give accurate results when the interval h in the given data is not too large (compared with
the variability in the driving function) and providing always that higher differences decreasein
value and eventually become negligible.

13
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Test Exercises

1. Form a difference table from the following data and deduce that f(x) isa  quadratic

function.
Usethe table to find f(0).
Use the Newton-Gregory forward interpolation formula based on x = 0 to find

f(x).

X 2 3 4 5 6
f(x) 300 428 588 78 1004

2. Use an appropriate interpolation formulato estimate f(16.4) and f(23.5) from the
following datatable:

X 16 18 20 22 24
f(x) 261.3 293.7 330.0 372.2 422.3

14
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Central differences

We have aready defined the forward difference operator by
Dy, =y(% +h) - y(X)= Y- ¥

and the backwards difference operator by
=y(x)- y(x - h)=y, -y,

We now define the central difference operator,d , by

B D0 B Doy Ly

The forwards and backwards difference operators may be written in terms of the centra
difference operator

:y<xr+h)-y<xr):yigexr+_9+h"- :ge Lo hu

26 2 26" 2},
_ hg _
= B8 +25= M

Similarly it may be shown that Ny, = a%(, - ——dyr

The difference table, expressed in terms of central differencesis as follows x

X y dy d’y d’y d'y

Xo Yo
dy, dy,

X Y1 d 2yl
dyg d3y%

X Y d’y, d'y,
dy% d3y%

X; Ys d*y, d*y,
dy% d3y%

Xy Y4

We may develop an interpolation formula in terms of central differences. We first define the
shift operator Eby Ey, =v,,,

NOWl Dyr = yr+l - yr \ yr+l = yr + Dyr = (1+ D)yr
so Ey, =(1+D)y, \ E°1+D

15
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Also Dy, =dy,,, = dE%yr

Note that E%dyr = E%(ym_; - yr) = E%y”% - E%yr =Y~ Y
so Eidy =Dy =dE*y b theoperatorsE and d commute

\ Co Eid

and E°1+C°1+Ed \ D?° (Eid)(Eid)° Ed?° (1+ Eid)d?
\ PO d?+ES

and DP° DDF © Ed(d?+E?d®)° E*d®+Ed*° Eid®+(1+ Eid)d*
\ o EldP+d*+Ed

We may subgtitute in the Newton-Gregory forward formula

y(x +kh) =(1+D)"y,

=G0 kik- D2 wkk- pk- 22+ Yy
e 2! 3! o

- grigia+ D@ pia) LN D el var el
= §L+ KEZd + k(l; Y d?+ k(k- 1)'(k_ 2) E%d3’+...gyr

We now consider the relationship between backward differences and central differences.
By definition Nyr+1 =Ya~ Y \ Ye = Y- Nyr+1 = (1_ N)yr+l

AISO Eyr = yr+1 and yr = E_lyr+1 \ E_lo (1_ N)
Also by definition Ry, =y, -y, =dy,, =dE?y,, \ N°dE*?
or aternatively Neo dg?

E *d)(E *d) = E-'d? = (1- N)d2? = (1- E %d)d?

-1

N3 o Ed(d?- E *d®) = E ?d®- E'd*=E *d®- (1- E *d)d*
\ RBo E*d- d*+E 3P

We may substitute in the Newton-Gregory backward formula

16
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y(xr +kh) = (1_ N)_kyr

ye ~2 ~3 ~
= DRk D) N+ (kD) (k+2) N
§ ol 3 U

, k(k+1)

> (d?- E'%d3)+—k(k+1;l(k+2)(E'lzdg- d*+ E'%df’)+...§yr

= §L+ KE *d

= §L+ KE *d + k(kzrl)dz + k(k+13)'(k+2) E'%d3+...gyr

We now take the average of the forward and backward formulae and obtain

é L 14 2 ) P 14 2012 _ u
Y(xr+kh)=éL+k}_E E Hd+k—d2+k(k 1)(k+1)_1|’_E +E Hda”k(k 1)d4+---ﬂyr
& 1 % 2! 3 {2 4 ?

(The d* term may be derived in the same way as the other terms were derived).
. . Ef+E? .
We introduce afinal operator m= — called the averaging operator.

The function of this averaging operator can be seen from the following:

y - _Y + Y- Vi ¥ — Y- Yo
g(yﬁ% yr%) 2 2

¥ E'% + E%
mly, = MY,y - Y,.y) -]

We havefinally derived Stirling's formulafor interpolating in terms of central differences.

Stirling'sformula

. , -
y(x +kh) = &+ kd +%d2+ k(k-D(k+D) o KK -D) 0,
& !

3! 4l

u
Y
a

17
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We may see how the terms relate to the difference table

X y dy d’y d’y d'y
Xo Yo
&,
Xy Y1 d Vi
Xr— 2 yr— 2
dyr__g
X1 Y dzyr_l
dyr—% dsyr-%
X Yr d’y, d'y.
dyH% d’y .
X11 Y1 dzyHl
dy. a2
Xr+2 yr+2
FERHE e
Note that rrdyr =1 Tydyr - §(E 2dyr + Ezdyr) - E(dyr_i + dyr+1)
T 2 2

ie ndy, isthe average of the two differences highlighted in column 3 of the table.

Similarly nd’y, = %(d3yr_% + d3yr+%) and is the mean of the two differencesin boxesin column
5 of thetable.

Stirling's formula is useful for interpolating near the middle of a table, as the following
exampleillustrates.

18
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Example

Use Stirling's formula, with the difference table for eX to obtain el3.

X y=eX dy d’y d’y d'y
0.1 1.1052
0.7169
0.6 1.8221 0.4652
1.1821 0.3015
1.1 3.0042 0.7667 0.1962
1.9488 0.4977
1.6 4.9530 1.2644
3.2132
2.1 8.1662
Solution
X- X
x=x +kh x=13, x. =11, h=0.5 k= hr:O'4
. 2
& » 30042+ 04210211 194886 | 04 2667
2 g 2
_ . 2 2
+ 04(04 ;)(0.4+ 1 g343.3015;0.49773_'_ 04 ((i‘jl +1) 01962+...

\ e"® » 3.0042 +0.62618+0.061336- 0.0223776- 0.0010987 = 3.6682

(Exact result el3 = 3.6693, to 4 dp)

19
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NUMERICAL DIFFERENTIATION

Differentiation is a very important mathematical process and a great deal of effort has been
devoted to the development of analytic techniques of finding the derivatives of various
mathematical functions. It often occurs, however, that it is not possible to utilise these
traditional methods. This happens when:

(i)  Thefunctionistoo complex

(i)  Thefunction is unknown (when data are collected from some experiment).

In this section numerical techniques are described which provide an estimate of the derivative
of atabulated function.

Imagine that you have a procedure which computes a function f(x) and you want to find its
derivative f'(x). Easy? The definition of the derivativeisthe limit, ash ® 0 of

1) f(x+hr)]- f (%)

practically suggests an algorithm: Pick a small value h, evaluate f (x) and f (x + h) and apply
the above formula. The above procedure, however, contains two main sources of error:
truncation error and roundoff error. The roundoff error depends upon the machine used to
carry out the computation - it is necessary to ensure that the value used for h is exactly
represented by the machine. Truncation error comes from the higher order terms in the Taylor
series expansion:

f(x+h) = f(x)+hf x)+3h°f @x) +1h°F d(x)+..

f (x+h)-

which leads to T — ¢ gx) +2hf @)+

We will investigate methods of using difference tables to evaluate the derivatives of afunction
numerically. From page 6, the Newton-Gregory forward polynomial is:

f(x)» P,(x.)=f, +kDf,+*C,D’ f, +....+*C D' f, where k = (x- X,)/h

Differentiating the above equation, remembering that a = aP dk
dx dk dx

F€x)» PEx) =3{ D, +4(2k- DO f, +4(3K - Bk +2)DFf,+..}

We can simplify this considerably if we take k = 0, giving a derivative corresponding to x = x,

Fqx,) » H{Df, - 101, +401,- 40, +..- (- )" 2D} ©

20
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Example

Use the datain the table below to estimate y'(1.7).
Useh=0.2 and find theresult using 1, 2, 3 and 4 terms of the formula.

X y=eX Dy Dy Dy D'y
13 3.669
0.813
15 4.482 0.179
0.992 0.041
1.7 5474 0.220 0.007
1.212 0.048
19 6.686 0.268 0.012
1.480 0.060
2.1 8.166 0.328 0.012
1.808 0.072
2.3 9.974 0.400
2.208
25 12.182
With one term : y(17) =55(1212) =6.060
Withtwoterms  :  y(17) =< (1.212- 10.268) =5.390
Withthreeterms :©  y(17) =< (1 212- 10.268+0.060) = 5.490
Withfourterms  : y(17) =2 (1212- $0.268+10.060- £0.012) =5.475

The datain the table are for y = X, rounded to 3 dp.

The error in the derivative is rather small for 4 terms, which can be anticipated since the fourth
differences are approximately constant. This function is well-represented by a 4th degree
polynomial.

The above formula (1) for derivatives is a forward-difference approximation, for which the fit
provided by the interpolating polynomial is not symmetrical about x, - interpretation is more
accurate near the centre of the range of fit.

For most purposes it is better to use central differences for the purpose of evauating
derivatives. We use Stirling's formula as the basis of derivatives in an analogous manner to the
Newton-Gregory formula

i 2 - 2 2_ .
y(x) = {1+ kntly, +k—d2yr +Mmﬂ3yr LG 1)d“yr +o
i 2! 3! 41
k=(x-x)/h
and using thefact that &Y = ¥ K
dx dk dx

21
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N 2-
Differentiating gives ya(x ) :%l md + a2y, + X -1

Py JHC-2K U

2 md"y, +g

. d? Yy _ d dy ddydk dadyl .
U ddydk_ddydl bt
S G Tdxdx dkdxdx dkdxh veordan

11 6k 12k*- 2
yﬂr(xr)=p1d Y +—mi3y
|

AN 2 .
=i2:d y, +kmdy, + 1 24y,
h* 1 4!

Summary of results

At atabular point k =0 and so

yax )= mdyr L e Yy, +

rml5 +...l.’.I
6 30 Y

1 1., v
= —1d?y - —d*y +...
y®Xx, ) e Y- 50V

1
y(m(xr) » F rrdsyr

V(%) » -y,

Higher derivatives may be obtained in exactly the same way

Writing the expressions out in full:

1y, +dy 0 g
y&x.)»— nrdyr —e——=2(

2

Y™ Yea
- + - = - -
h @ 2 2h (yr yr—l yr+1 yr) 2h

YHX ) » —

Y d(dyr) = d(yH_ Yi-3)

1 _ yr+ B 2yr +yr-
ZF[yHl_ Y- ¥ +yr-l]_ - h2 :

22




BSc 2 Computing Mathematics/ Computing Maths with Business Studies- Mathematical Techniques

Example 1

Use the tabulated values of y = eX to approximate dy / dx and d?y/ dx® at x = 1.1.

X y=eX dy d’y d®y d'y
0.1 11052 (y,)
0.7169
0.6 1.8221 (y,) 0.4652
1.1821 0.3015
11 3.0042 (y,) 0.7667 0.1962
1.9488 0.4977
16 4.9530 (y,) 1.2644
3.2132
21 8.1662 (y,)

dy, S Y~ Vi 4.9530- 18221
dx 2h

=3.1309
(exact value 3.0042, to 4 d.p.)

—22 i( Ys- 2y, + yl) = 0—1_)2 (49530- 2" 30042 +18221) = 30668
(exact value 3.0042, to 4 d.p.)
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Test Exercises

1. Thefollowing tableisfory = 1 + log x. Determine estimates of y* at x = 0.15, 0.19 and
0.23 using
(@ oneterm, (b) two terms, (c) three terms of equation (1) at the beginning of this
section. Determine the errors by comparison with the analytical values.

X y=(1+logx) Dy Dy Dy
0.15 0.1761
0.17 0.2304
0.19 0.2788
0.21 0.3222
0.23 0.3617
0.25 0.3979
0.27 0.4314
0.29 0.4624
0.31 0.4914

2. A central-difference approximation for derivatives is more accurate than using a forward-
difference approximation. Repeat Exercise 1(b) but use appropriate central difference
formulae and compare the errors.
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NUMERICAL SOLUTION OF DIFFERENTIAL EQUATIONS

Problems involving ordinary differential equations (ODES) can always be reduced to the study

of setsof first order differential equations. For example, the second order equation:
2

d7y dy _
F“I(X)& =r(X)

can be re-written as two first-order equations:

Y L =1 (0- 40029
X

where z isanew variable. We shall therefore just consider first-order ODEs. Also, we shall
consider initial value problems in which al the y values are known at some starting x vaue.
The underlying idea of any method for solving the initial value problem is to rewrite the dy's
and dx's in the formula above as finite steps Dy and Dx and multiply the equations by Dx. This
gives algebraic formulas for the change in the functions when the independent variable x is
"stepped” by one "stepsize’ Dx. In the limit of small stepsize, a good approximation to the
underlying differential equation is achieved. Literal implementation of this procedure results
in Euler's method, below, which is NOT recommended for practical use because it is
computationaly inefficient. Euler's method is conceptually important, however, in that one
way or another all practica methods come down to the same idea: add small icrements to your
functions corresponding to derivatives (right-hand sides of the equations), multiplied by
stepsizes.

EULER'sMETHOD
Suppose we must solve the equation % = f(x,y),giventhat y =y, when x = X,.

Divide the range of values of x into n equal steps x,, %, X, ..., X

n*

The step width isthen given by: h = %
y
. /
-
yO
XO Xl X

d
Y, = yo+hd_i =Y, +hf (X, o)
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Y =y, +hf (X, y;)

Yo = Yoo HOF (X1 Y1)

Example 1

Takeh=0.1:
[ X;
0 2.0
1 2.1
2 2.2
3 2.3
[ X;
0 2.0
1 2.1
2 2.2
3 23

__y_X

dx

Find y(2.3) given y(2)=3.

Y1 = YO+O-J(YO2' X5)
Vi = Yy + 02 ¥ - X

Yi
3.00

Yi
3.00
3.700
4.859
7.000

yi? YiZ-Xi
yi? YiZ-Xi
9.000 7.000

13.690 11.590
23.610 21.410

X =2,Y,=3

0.1(y;2-x;)

0.1(y;2-x;)
0.700
1.159
2141

Yi+1

Yi+1
3.700
4,859
7.000
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Example 2 % =x+y  Findy(0.05) correct to 5 d.p. given that y(0)=2
Take h=0.01; Yia =Y, F00UX, +Y,), Yo=2, X% =0
\' Y=y 001y

i X Yi yi 0.01y;’ Yi+1
0 0.00 2 2 0.02 2.02
1 0.01 2.02 2.03 0.0203 2.0403
2 0.02 2.0403 2.0603 0.020603 2.060903
3 0.03 2.060903 2.090903 0.02090903 2.08181203
4 0.04 2.08181203  2.12181203 0.0212181203  2.1030301503
5 0.05 21030301503

Example 3 % =21+x)-y Findy for x=2.0(0.2)3.0, given y(2)=5

abr~rwWNPEFE O —

Takeh=0.2 Yiu = Y, +0.2y,
X; Yi Y
2 5 1
2.2 5.2 12
2.4 5.44 1.36
2.6 5.712 1.488
2.8 6.0096 1.5904
3.0 6.32768
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Example4 % =1+x- vy Findy for x=1.0(0.2)2.0, given y(1)=2
X
Take h=0.2 Yia =Y +0.2y/

i X; Yi Yi

0 1.0 2 0

1 12 2 0.2

2 14 204 0.36

3 16 2112 0.488

4 18 2.2096 0.5904

5 2.0 2.32768 0.67232
EXERCISES

Solve the following ODEs to obtain the required values of y, under the given initial conditions:

1 If % =x+y findy for x=0,(0.1),0.5, given that y(0)=1.
(Solution: 1.0, 1.1, 1.22, 1.362, 1.5282, 1.72102)

2. If % =1+xy findy for x=0,(0.1),0.5, given that y(0)=1.
(Solution: 1.0, 1.1, 1.211, 1.3352, 1.4753, 1.6343)

3. Solve the above two equations by analytic methods and check your numerical results from
questions 1 and 2.
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SECOND-ORDER ODEs

To solve first order ODEs, one boundary/initial condition was required; for second order ODEs
it becomes necessary to have two. We approximate the second derivative by the first term of the
central difference formula presented earlier in this booklet. We can see from the following
diagram how this can be derived geometrically:

Approximate slope at B may be given by:

(1) BC % p D00 (Forward difference)
2) AB: % »W (Backward difference)
3) AC % » W (Central difference)
42 Yi- YO_ Yoo Y 2
- +
For the second derivative: Z’» h h % y20 Y1
dx h h
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2
Example 1 ‘;'IXZ =y Find y(0.6), giveny(0)=1, y(0.1)=1.1

h=0.1 Yia 2h)2/I * Yes =y, P y,=201y,- vy,
i X; Yi 2.01yi-yiq
0 0 1
1 0.1 1.1 1.211
2 0.2 1.211 1.33411
3 0.3 1.33411 1.4705611
4 0.4 1.4705611 1.6217178
5 0.5 1.6217178 1.7890917
6 0.6 1.7890917

2
Example 2 ((jsz =4y Find y(0.6), giveny(0)=0.5, y(0.1)=6.0

h=0.1 Yoa” 2h)2/I THa YiP ¥.,=201y -y,
i X Yi 2.01y;-yi 1
0 0 0.5
1 0.1 6.0 11.56
2 0.2 11.56 17.2356
3 0.3 17.2356 23.083556
4 0.4 23.083556 29.162348
5 0.5 29.162348 35.532762
6 0.6 35.532762
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Example 3 B ax 2y =0 Findy(0.05),given y(0)=3, y(0.01)=3.1
h=0.01 \ Yia - 2y| + Vi1 _ Yia - Yia _ 2y| =0

h? 2h

h
\ (Vi 2y + 1) - E(ym- Yi.1)- 2h°y, =0

h h
\ Yia(l- E) =2y, - Y, +§Yi-1 - 2h*y,
—9o. o)y + 3.0, U/§_ hu

\ Yin = gz 2h )yi +%2 1I'Z€yi'lMA 28

\ Yi., =10050251(19998y, - 0995y, ,)
i Xi yi 19998y|-0995y|_1
0 0.00 3
1 0.01 3.1 3.21438
2 0.01 3.2305326 3.3759191
3 0.03 3.3928834 3.5707083
4 0.04 3.5886515 3.8006662
5 0.05 3.8197649
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IMPROVED EULER METHOD (IEM)

The ordinary Euler method may be improved by estimating the slope over the interval between
points by the average of the sopes at the beginning and the end. We know the slope at the start
point, SO we can use this to estimate the y-vaue of the end point. From this we can estimate the
dope at the end point. Taking the mean of the two slopes, we can then predict the true y-value
with greater accuracy.

y y 3,

X
Estimate of y, based on slopeat x,: V. = Yo +hf (X, Y,)
Estimate of y, based on dlopeat x;: §/1 =y, +hf (x,,V,)

Take v, =4(%, + 1) = Yo + 2 £ (%, Yo) + T 0, 2)}

Thiswill set up an iterative scheme asfollows:

Yiy = Yo +Pf (X5, Yo)
Vi = Yo + 31 £ 0%, Y0) + T (%0, Vi )}
Yoy = Yo +31{ £ (%0 Yo) + £ 0, i)}
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Summary of the method

The stepsin the method are as follows:

1. We gtart with the given equation y(= f(x,y), and with theinitial condition that y =y, at
X = X,. Wehaveto determinevaluesof y for x = x, to x,, step h.

2. From the equation and the initial values we can determine yg = f(x,,Y,). Thisisthe
ordinary Euler method.

3. Wenow know X,,Y,, y§ and h, and can therefore calculate

(a) X, =X, +h

(b) Y, =Y, +hyg (again, thisisthe same step as the ordinary Euler method)
(c) We now calculate f(x,,Y,), and then we can estimate

() ¥ = Yo +5h{ yg+ 106, 7))

4. Thisis the first estimate of y,. We can, if we wish, repeat steps (c) and (d) in 3 above,
replacing y, with the calculated value y, and thereby finding an improved estimate of ;.
Thisis known as the recur sive method. We can continue to employ this recursion until we
obtain enough accuracy (i.e. until the n™ decimal place remains unchanged).

5. Finaly, wecan calculate yf = f(x,,y,) and repeat steps3 and 4 to find x, andy,. Thisis
then repeated for all the values of y that we are required to find.

Example 1 Apply the Improved Euler Method, without recursion, to solve:
% =x+y forx=0.0t00.5step 0.1, giventhat y(0)=1.

We proceed in a step-by-step routine: we have the equation y'= x +y.
Initial conditionsP  x, =0, y, =1 \YE= Xt Y, =1
Also h=0.1 \ X, =% +h=0.

(@ First caculatethevalue y, =y, +hyy =1+0.1" 1=11

(0) v, =Y, +3h{yg+ f(x, %)} =1+005" {1+(01+11)} =111

(c) Sowehavex, =01, y, =11 \' y(=01+111=121

(d  We now take these last results in place of x,, y,andys in the above

caculations, and find the corresponding vaues for the next interval :
X,, Y, and ys. These valuesare shown in the following table:
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Xn
0.0
0.1
0.2
0.3
04
0.5

O, WNEFLOS

Yn
1.0
111
1.24205
1.398465
1.581804
1.794893

We now use recursion to obtain improved estimates of .

Asbefore, wehave x, =0, x, =0.1, y, =1land y§ =1.
We next calculate, as before, y, =y, +hyg =11

andestimate  y, =y, +3h{ y$+ f(x, ¥,)} =1+005" (1+12) =111

So far, thisis al identical to the previous calculation, however, instead of stopping now and
using this value as the final estimate for y, we substitute this value back into the last formula

YS
1.0
121
1.44205
1.698465
1.981804
2.294893

abovein placeof y,. For the value found so far we use the notation y; ,,.

We therefore proceed to find: y;,, = Y, +3 h{ y8+ (X, Yo )} =1+005" (1+01+Yy,,)

We now have a recursion relation which can be smplified by multiplying out the constants to

give:

Yiny =1055+0.05y,, ,

and we can then tabulate the values of 'y, , for increasing values of n:

OO WNE S

Note that after 5 iterations we have achieved 7 decimal place accuracy in the solution and that

y](n)
11

111
1.1105
1.110525
1.1105263
1.1105263

the estimate without recursion isin error by 0.0005263, or 0.0474144%.
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Example 1 = =x%y X, =1 x =11, y,=3 f(xy)=xy
Yiy = Yo +Pf (X5, Yo)
_ 1
e = Yo + 51 (%01 ¥0) * (%0 i)

here Yy =3+0.1(3)

Vi = 3+0.05(3+11%y, ., ) = 315+ 0.0605y,
(i +1) i) i)

(i) y]é(i) Y1(i+1)=3.15+0.0605y 1(j)
1 33 3.34965

2 3.34965 3.35265

3 3.35265 3.35283

4 3.35283 3.35285

5 3.35285
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Example 2 Q:iz %=1 %=11, Yy,=1 f(x,y)=i2
Xy y
Euler's Method: Vi =y +hE (% y) = 140122211
. 1 0 01J0 181@

Improved Euler Method: Vi = Yo +hf (X5, o)

Yiisy = Yo +%h[ f (Xo’ YO) + f(Xl’ yl(i))]

here Vi =11
Yai+1) :1+10.1(1+ ! ~) =105+ O'OE
2 Yy Yy
é) %10 Y1(i+1)=1.05+0.05/y1(i)?
1 11 1.09132
2 1.09132 1.09198
3 1.09198 1.09193
4 1.09193
3
Exact Solution: Q:% \ y’dy = dx yE:x+c \ y=R/3x-2
Xy

\ y(1.1)@.091392
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Example 3 %=x+y X =0, x,=01, y,=1 f(Xx,y)=x+y

Yiy = Yo +Pf (X5, Yo)
1
Yiisy = Yo +§h[ f (Xo’ YO) + f(Xv yl(i))]

for yq
here Yig =1+0.12) =11
Yyisg =1+0.05(1+01+y,;) =1055+0.05y,;
i Y1(; y1(i+1)=1.055+0.05y1j)
0 1.(1) (1) 111
1 111 1.1105
2 1.1105 1.110525
3 1.110525 1.1105263
4 1.1105263 1.1105263
5 1.1105263
\ y, €11105263
for yo.

x =01 x,=02, 1y =11105623, f(x,y)=x+Yy
Yiy = Yo +Pf (X5, Yo)

1
Yiisy = Yo +§h[ f (Xo’ YO) + f(Xp y](i))]
here f(x,y,) =X +Yy, =12105263

Yo =11105263+0.1(12105263) = 12315789
Yogsy = 11105263+ 0.05(1 2105263+ 0.2+ y,,, ) = 11810526 + 0.05Y,5,

[ yzg y2(i+1)=1.1810526+0.05y 2(j)
0 1.2315789 1.2426315

1 1.2426315 1.2431842

2 1.2431842 1.2432118

3 1.2432118 1.2432132

4 1.2432132 1.2432133

5 1.2432133

\ y, €12432133
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THE RUNGE-KUTTA METHOD

The Euler method, which has the formula
yn+l = yn +hf (Xn’ yn)

advances a solution from x, tox.,, ° x, +h. The formula is non-symmetric - it advances a
solution through an interval h using derivative information only at the beginning of the interval,
asillustrated in the figure below:

1 1 | X

X X X
1 2 3

There are several reasons why Euler's method is not recommended for practical use, among
them (i) it is not very accurate when compared with other methods run at the equivalent
stepsize and (ii) it is not very stable. Consider, however, the use of a step like in the above
illustration to take a "trial" step to the midpoint of the interval. Then use the value of both x
and y at that midpoint to compute the "real" step across the whole interval. The following
diagram illustrates the method:

Mathematically, this can be written as k, =hf (x.,V.)
k, =hf (x,+3h,y, +2k)
You = Yo +ky +O(R°)

This procedure is called the second-order Runge-Kutta method (a method is conventionally
called n™ order if its error term is O(h"™)).

We need not stop there. There are a number of ways of evaluating the right-hand-side f(X,y)
that all agree to first order, but that have different coefficients of higher-order error terms.
Adding up the right combination of these, we can eliminate the error terms order by order.
This is the basic idea of the Runge-Kutta method. By far the most commonly used of these
methods is the classical fourth-order Runge-Kutta formula:
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Fourth-Order Runge-Kutta Formula

kl:hf(xn’yn)

k, = hf (x, +3h,y, +3k,)

ks = hf (%, +3h,y, +3k,)

K, :hf(x +h,y, +k,)

Yoy =Y, +ik +1ik, +1k, +1k, +O(h°)

The fourth-order Runge-Kutta method required four evauations of the right hand side per step
h. This will be superior to the second-order method if at least twice as large a step is
possible for the same accuracy. Isthisso? The answer is. often, perhaps even usualy, but not
aways. This emphasises the fact that high order does not aways mean high accuracy. A
good system should exert some adaptive control over its own progress, making frequent
changes to its stepsize to maintain the error within predetermined limits. This, however, is
beyond the scope of this unit.

Example 1 Solve % =X+Yy, giventhat y(0)=1
X =0,¥%=1Ly5=1L,h=01 X =% +h=0.1
k,=hys=01
k, = hf (0+0.05,1+ 0.05) = hf (0.05,105) \ k,=0.11
Kk, = hf (0+0.05,1+0.055) = hf (0.05,1055) \ k, =0.1105
k, =0.12105
\ y, =1110342
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Exercises

1. Using the 4th order Runge Kutta method,

(@)

compute an estimate of x(0.75) for the initial value problem:
%=x+t+xt, x(0) =1
dt

using astep sizeof h =0.15.
(Solution: 3.2345)

(b) compute an estimate of x(2) for the initial value problem

x__1 X(1) = 2
dt  x+t
usingastep sizeof h=0.1.
(Solution: 2.2771)

Solve yc=x+ywithy=1atx=0.
Determine the function values for y for x=0(0.1)0.5.
(Solution: 1.0,1.110342,1.242806,1.399718,1.583649,1.797442)

Solve y¢=y*- xy with y=0.4 a x=0.
Determine the function values for y for x=0(0.2)1.0.
(Solution: 0.4, 0.4259, 0.4374, 0.4319, 0.4085, 0.3689)

y- X
y+X
Determine the function values for y for x=0(0.2)1.0.

(Solution: 1.0, 1.1679, 1.2902, 1.3817, 1.4497, 1.4983)

Solve y¢= with y=1at x=0.
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