Numerical Integration

 Various techniques for estimating area
under a function

P

1) «—

a

* In general, we assume functions are smooth
and continuous
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Numerical Quadrature

Quadrature rules based on polynomial
Interpolation

ntegrand functiori sampled at points

Unique polynomial interpolating these
points Is determined

ntegral of interpolant is taken as
approximation to integral of original
function.
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Numerical Quadrature

e N-point quadrature formula

b n
H(F)=[T(X)ax= ;V"if()ﬁ)J“Rn x;: nodes where f is evaluated

w;: weights
R.: Error term

I(f)ziwif(m

 In practice, interpolation is used to choose
only the weights in the quadrature rule
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Newton-Cotes Quadrature

 Equally spaced points, whether we use
tabular data, or evaluate function directly

e Forn points, polynomial interpolation of
degreen-1 can be used to generate n-point
guadrature rule

« A polynomial function of degree-1 will be
Integrated exactly with ampoint
guadrature rule
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Common Newton-Cotes
Quadrature Rules

 Midpoint (or rectangle) rule - 1 point
e Trapezoid rule - 2 points

e Simpson’s rule - 3 points
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Midpoint (rectangle) Rule

(b—M

/

| nterpolation function derived at
midpoint of interval by a constant
(polynomial of degree zero)

<

a b

|(f):|v|(f):(b—a)f[5'%b

I(f)iwif(m

3 _a+b
W, =b-a, X = >
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Trapezoid Rule

| nterpolation function derived at
endpoints of interval by a straight
line (polynomial of degree one)

(D =T(H=""2(f@+ 1)
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Simpson’s Rule

| nterpolation function derived at
endpoints and midpoint of interval

by a quadratic (polynomial of degree
two)

3
- (f)=> wf(x)
'(f)zs(f)=b—;Ef(a)+4f§I”7b§+f(b) ;

W =

b—a
6 )

a

6 7
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Method of Undetermined
Coefficients

« Another approach for finding weights of
guadrature rules

 Use monomial basis functions and form
system of equations by forcing quadrature
rule to integrate each of the basis functions
exactly

e Solve system of equations for weights
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Example - Finding Weights for
Three-Point Rule

j g(x)ax =wg(x) +W,g(X%;) +W;g(x;)

Use monomial basis functions Form system of 3 b
and equally-spaced points equations by forcing Z W g, (%)= I g, (x)dx
9,(¥) =1, 9,(X) =%, g,(x)=x guadrature rule to = a
integrate each of the 3 b
basis functions W g,(x ) :J'gz(x)dx

= a+b’ exactly

X

ivvigs(x) =j93(x)dx
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Finding Weights for Three-Point
3 Rule

ZW.gl(x) J’ g,(X)dx .
| W1|:l+W2El+W3|:l:J'1dX:X‘Z:b—a

3

Z 0,(%) = j g, (x)dx

L

X

2
w, [+ w, ﬁ+w[ﬂ) J'xdx—— =

3

> 8:(%) 3 jgg(X)dX

1
(a+b)/2

(a+b)/2)* p?
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Disadvantages of Newton-Cotes

e Large number of points will result in high-
degree interpolant

 Requirement for evenly spaced points

e More accurate methods exist at less
computational cost
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Trapezoid Method

e Newton-Cotes rules can be used In
piecewise manner over large intervals

Xn n—lh
FO)dX=T =S 2 (f (x) + f (x +h)
=200+ roc+n) Y 2,200 )

_RECQ)*+ FO+h)+ £ 00+ £ (g )+
T 20 f (%) + (% +h) -

:g[f (%) +2f(x)+2F (%) +---+2F (X, ;) + f(Xn)]
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Trapezoid Method - Example

X
16
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2

f(x)
4.953
6.050
7.389
9.025

11.023
13.464
16.445
20.086
24.553

Approximate

US ng 1, 2, 4, and 8 intervals

1 interval

j[zf (X)dx = g(f (1.6) + f (3.2))

= 0.8(4.953+ 24.553)
= 23.605
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Trapezoid Method - Example

X
16
1.8
2.0
2.2
2.4
2.6
2.8
3.0
3.2

f(x)
4.953
6.050
7.389
9.025

11.023
13.464
16.445
20.086
24.553

-

1.6

2.4

3.2

2 Intervals

jff (X)dx = g(f (1.6) +2f (2.4) + £ (3.2))

= 0.4(4.953+ 2[11.023 + 24.553)
= 20.621
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Trapezoid Method - Example

X
1.6
1.8
20
2.2
24
2.6
2.8
3.0
3.2

(x)
4.953
6.050
7.389
9.025

11.023

13.464

16.445

20.086

24.553

4 intervals

jff (x)dx~g(f (1.6) +2f (2.0) +2f (2.4) + 2 (2.8) + f (3.2))

=0.2(4.953+14.778+ 22.046 + 32.890 + 24.553)
=19.844

16

20 24 28 32

8 intervals

j[zf (X)dx = g(f (1.6)+2f (1.8) + 2 (2.0) + 2 (2.2) + 2 (2.4) + 2 (2.6) + 2 (2.8) + 2 (3.0) + 1 (3.2))

=0.2(4.953+12.100+14.778+18.050 + 22.046 + 26.928 + 32.890 + 40.172 + 24.553)
=19.647
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Romberg Integration

* Trapezoid method with Richardson’s
extrapolation

— Use trapezoid method with step dize
— Use trapezoid method with step SiZ2
— Use results of step sizkaandh/2, and

extrapolate a more accurate solution

h;
h/
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Richardson’s Extrapolation

Given an order n numerical method, solutions Q, and Q,
obtained with step sizes h, and h,, we can extrapolate
amore accurate solution Q:
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Theory of Richardson’s
Extrapolation

Assume error is of order h" for some numerical algorithm:

Let Q be true solution (which we don’t know yet)
LetQ, be an approximation usirg
LetQ, be an approximation usirg
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Theory of Richardson’s
Extrapolation (continued)




Romberg Integration Example

e Use Trapezoid method fay(h?)
approximations using interval sizeshpf
h/2, h/4 andh/8

Interva
f(X) Size
4,953
6.050 h

7.389

9.025
11.023
13.464
16.445
20.086
24.553

|

Derived from f(x) = e

23.605

20.621—* 19.626

19.844 19.585 —* 19.627

19.647—» 19581—> 19.585—*»19.585

3.2

e*dx =19.57949777 R
s solution
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Gausslan Quadrature

e Gaussian rules based on polynomial
Interpolation

 Nodes not evenly spaced - locations of
nodes chosen to maximize accuracy

* As before seeking

I(f)ziwif(m

where choices of x. and w, are derived for optimality
through nonlinear procedures
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Deriving Gaussian Quadrature
Rules

e Use method of undetermined coefficients,
where both the weights AND the nodes are
unknown.

 Example - trying to derive a two-point rule

j- FOgdx=w, T (x)+w,T(x,)

where x; and w; represent four unknowns. Therefore,
we need four equations.
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Gaussian Quadrature Rules

j- FOgdx=w, T (x)+w,T(xX,)

Use monomial basis functions

0,(xX) =1, g,(x) =x, 2
9,(X) =%, g,(x)=x ‘ Z 0,(%) = Igl(X)dX

2

Because of the use of higher
degree basis functions, a Form system of Z 92(%) = J'gz(x)dx

polynomial of degree 2n-1 equations by forcing )
will be integrated exactly quadrature rule to Z gs(X) = I g,(X)dx
with an n-point Gaussian integrate each of the =
quadrature rule basis functions 2

exactly Z d,(%) = J'g4(x)dx
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Gaussian Quadrature Rules

1

_ 1
VV.Ql(Xu) - :[gl(X)dX W, M1+ W, D_:J']_dx = x‘l_l =1+1=2
=4

2 W02(X) = [G,(x)x

2 V¥9a(X) = [ g5 (x)x

2

Wg,(x) = j d,(X)dx
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Gausslan Quadrature Rule

j- FOgdx=w, T (x)+w,T(x,)

1 PV VTR
J;f(x)dx~f( \@)+f(\@)

Typically, we will need to transform general interval of
Integration [a, b], to astandard interval [a, (] (e.g. [-1, 1])
for which nodes and weights have been tabul ated.
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Interval Transformations

We want to apply
a Gaussian quadrature

B n
S (6)ce =5 wi©)

Given an integral

rule of theform

Therefore, we need a transformation
between the two coordinate systems

b B
1(g) = j g(x)dx = j a(x(£))JI(&)dé

where x(&) iscoordinatetransformation

and J(&) = = XE) s ther Jacobian

dé  dx
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Linear Coordinate
Transformation

_ (b-a)é +af —ba b s
X=x(£)= T 1(9) = [9(¥dx =[ g(x(£)I(£)dé

dx _ dx(<) _

J@E)=—"2= _? Ob-a)é+aB-badlb-a
T ‘IQE(T%EH

b-a)é+af -ba

&

ol

WG b—a)g;itzﬂ—baﬁ
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Gaussian Quadrature Example

Appioximate with previ%lAv defined two-point rule

1 PV YT
J;f(x)dx~f( \@)+f(\@)

x= (&) = (b—a)é+ab—-ba _ (1-0)¢+0+1 _

- - 910

) (—1/\@)+1E2 ) (1/\@)+1E2
2 E 2
+e

= (0.746595
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Values for Gausslan Quadrature

Weights and nodes for numeraupoint

Gaussian quadrature rules have already
been tabulated

See handout
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Multiple Integrals

o Straightforward extension of one dimension
case

IJ f (X, y)dAz!% f(X, y)dy%ix :JC‘E f (X, y)dx%iy

where A is bounded by the lines
X=a, X=b, y=c, and y=d.

J’Jf(x, y)dA = Z:vj zwif(x,yj)
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Monte Carlo Methods

e For three or more dimensions, traditional
guadrature methods become expensive

o Use of “random” techniques offers
relatively inexpensive approach for
approximating higher integrals
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Monte Carlo Algorithm

Generate random points within intervél,
of integration

Evaluate the integrand at each random point

Sum all of the integrand evaluations and
divide by the number of evaluations, to get

the mean function value

Multiply this mean value by “size” of
Interval
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Monte Carlo Algorithm

Genera n-dimensional

Q n
f(ab,..,2dQ==Y f(a,b,..,z) |
-g[ n; fo

Error approximately -V 2

Example - to gain extra decimal place of
accuracyn must be increased by factor of
100

Not competitive for one or two dimensions

Convergence rate independent of number of
dimensions!
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1D Monte Carlo Example

1D Monte Carlo Formula

n

L 1 1
1(0) = [~ xR [e “dx == &
0 0

2

n&

# The function we’'re integrating
function val = f(x)

val = exp(-x"2);
endf uncti on

YRS Lo n Sample Results

n=0 10 068897 0.85972 0.72331 0.82431

while (n < MAXN) 100 0.75350 0.74103 0.74532 0.77929
% GErecal e AREET AT 1000 0.75231 0.74837 0.74338 0.74616

# betveen 0 and 1 10000 0.74438 0.74454 0.74635 0.74840

sum = sum + f(x);

n++;
endwhi | e

result = sumn
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2D Monte Carlo Example

2D Monte Carlo Formula

b d | :11 Py
Jf f 0y = EBEZDS 1 () O=ffe

# The function we’'re integrating
function val = f(x, y)

val = exp(-y*x"2);
endf uncti on

MAXN = 10000;

n = 0; Sample Results

sum = O;

while (n < MAXN) 10 0.88563 0.82103 0.88990 0.86539
# Cenerates random nunber 100 085712 087623 088007 087531
# between 0 and 1

% = hangk 1000 0.86726 0.85909 0.86455 0.86057
i = ek 10000 0.86232 0.85982 0.86063 0.86130

sum = sum + f(x,y);

n++;
endwhi | e

result = sumn
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4D Monte Carlo Example

bdfh

I I ,r _I f(w, X, y, Z)awdxdydz =

aceg

Mi f((W,x,Y,2),)

n

# The function we’'re integrating
function val = f(w, x, y, 2)

val = exp(-y*wz*x"2);
endf uncti on

MAXN = 100;

n = 0;
sum = O;
while (n < MAXN)

# Gener at es random nunber
# between 0 and 1

W = rand;

X = rand;

y = rand;

Z = rand;

sum = sum + f(w, Xx,y, z);

n++;
endwhi | e

result = sumn

1111

@ =([[ Ie‘“’xzyzdwdxdydz

0000

1111

[[[ e "cwexdydz = 1

0000

n 2
—WX
e yz

k=

n Sample Results
10 0.97300 0.99244 0.97744
100 0.96397 0.95508 0.95703
1000 0.96288 0.961/5 0.96482
10000 0.96113 0.96192 0.96253

0.98583
0.95573
0.96202
0.96230
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