Numerical Integration

 Various techniques for estimating area under a function

• In general, we assume functions are smooth and continuous

Numerical Quadrature

- Quadrature rules based on polynomial interpolation
- Integrand function f sampled at points
- Unique polynomial interpolating these points is determined
- Integral of interpolant is taken as approximation to integral of original function.

Numerical Quadrature

• *n*-point quadrature formula

$$I(f) = \int_{a}^{b} f(x)dx = \sum_{i=1}^{n} w_{i} f(x_{i}) + R_{n}$$

$$I(f) \approx \sum_{i=1}^{n} w_i f(x_i)$$

 x_i : nodes where f is evaluated

 w_i : weights

 R_n : Error term

• In practice, interpolation is used to choose only the weights in the quadrature rule

Newton-Cotes Quadrature

- Equally spaced points, whether we use tabular data, or evaluate function directly
- For *n* points, polynomial interpolation of degree *n*-1 can be used to generate n-point quadrature rule
- A polynomial function of degree *n*-1 will be integrated exactly with an *n*-point quadrature rule

Common Newton-Cotes Quadrature Rules

- Midpoint (or rectangle) rule 1 point
- Trapezoid rule 2 points
- Simpson's rule 3 points

Midpoint (rectangle) Rule

Interpolation function derived at midpoint of interval by a constant (polynomial of degree zero)

$$I(f) \approx M(f) = (b-a)f\left(\frac{a+b}{2}\right)$$

Area of rectangle

$$I(f) \approx \sum_{i=1}^{1} w_i f(x_i)$$

$$w_1 = b - a, \quad x_1 = \frac{a + b}{2}$$

Trapezoid Rule

Interpolation function derived at endpoints of interval by a straight line (polynomial of degree one)

$$I(f) \approx T(f) = \frac{b-a}{2} (f(a) + f(b))$$
 $I(f) \approx \sum_{i=1}^{2} w_i f(x_i)$

$$I(f) \approx \sum_{i=1}^{2} w_i f(x_i)$$

$$w_1 = \frac{b-a}{2}$$
, $x_1 = a$, $w_2 = \frac{b-a}{2}$, $x_2 = b$

Simpson's Rule

Interpolation function derived at endpoints and midpoint of interval by a quadratic (polynomial of degree two)

$$I(f) \approx S(f) = \frac{b-a}{6} \left(f(a) + 4f \left(\frac{a+b}{2} \right) + f(b) \right)$$

$$I(f) \approx \sum_{i=1}^{3} w_i f(x_i)$$

$$w_1 = \frac{b-a}{6}, \quad x_1 = a, \quad w_2 = \frac{2(b-a)}{3}, \quad x_2 = \frac{a+b}{2},$$

 $w_3 = \frac{b-a}{6}, \quad x_3 = b$

Method of Undetermined Coefficients

- Another approach for finding weights of quadrature rules
- Use monomial basis functions and form system of equations by forcing quadrature rule to integrate each of the basis functions exactly
- Solve system of equations for weights

Example - Finding Weights for Three-Point Rule

$$\int_{a}^{b} g(x)dx \approx w_{1}g(x_{1}) + w_{2}g(x_{2}) + w_{3}g(x_{3})$$

Use monomial basis functions and equally-spaced points

$$g_1(x) = 1$$
, $g_2(x) = x$, $g_3(x) = x^2$

$$x_1 = a, \quad x_2 = \frac{a+b}{2}, \quad x_3 = b$$

Form system of equations by forcing quadrature rule to integrate each of the basis functions exactly

$$\sum_{i=1}^{3} w_i g_1(x_i) = \int_{a}^{b} g_1(x) dx$$

$$\sum_{i=1}^{3} w_i g_2(x_i) = \int_{a}^{b} g_2(x) dx$$

$$\sum_{i=1}^{3} w_i g_3(x_i) = \int_{a}^{b} g_3(x) dx$$

Finding Weights for Three-Point

$$\sum_{i=1}^{3} w_i g_1(x_i) = \int_{a}^{b} g_1(x) dx$$

$$\sum_{i=1}^{3} w_i g_2(x_i) = \int_{a}^{b} g_2(x) dx$$

$$\sum_{i=1}^{3} w_i g_3(x_i) = \int_{a}^{b} g_3(x) dx$$

Rule

$$w_1 \cdot 1 + w_2 \cdot 1 + w_3 \cdot 1 = \int_a^b 1 dx = x \Big|_a^b = b - a$$

$$w_1 \cdot a + w_2 \cdot \frac{a + b}{2} + w_3 \cdot b = \int_a^b x dx = \frac{x^2}{2} \Big|_a^b = \frac{b^2 - a^2}{2}$$

$$w_1 \cdot a^2 + w_2 \cdot \left(\frac{a+b}{2}\right)^2 + w_3 \cdot b^2 = \int_a^b x^2 dx = \frac{x^3}{3} \Big|_a^b = \frac{b^3 - a^3}{3}$$

$$\begin{bmatrix} 1 & 1 & 1 \\ a & (a+b)/2 & b \\ a^2 & ((a+b)/2)^2 & b^2 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} = \begin{bmatrix} b-a \\ (b^2-a^2)/2 \\ (b^3-a^3)/3 \end{bmatrix}$$
Weights for Simpson's Rungles and the sum of the content of the con

Disadvantages of Newton-Cotes

- Large number of points will result in highdegree interpolant
- Requirement for evenly spaced points
- More accurate methods exist at less computational cost

Trapezoid Method

• Newton-Cotes rules can be used in piecewise manner over large intervals

$$t_i = \frac{h}{2} \left(f(x_i) + f(x_i + h) \right)$$

$$\int_{x_0}^{x_n} f(x) dx \approx T = \sum_{i=0}^{n-1} \frac{h}{2} (f(x_i) + f(x_i + h))$$

$$= \frac{h}{2} \left[f(x_0) + f(x_0 + h) + f(x_1) + f(x_1 + h) + \cdots + f(x_{n-1}) + f(x_{n-1} + h) \right]$$

$$= \frac{h}{2} [f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n)]$$

Trapezoid Method - Example

f(x)1.6 4.953 1.8 6.050 2.0 7.389 2.2 9.025 2.4 11.023 13,464 2.6 16.445 3.0 20.086 3.2 24.553

Approximate

$$\int_{1.6}^{3.2} f(x) dx$$

using 1, 2, 4, and 8 intervals

$$\int_{1.6}^{3.2} f(x)dx \approx \frac{h}{2} (f(1.6) + f(3.2))$$
$$= 0.8(4.953 + 24.553)$$
$$= 23.605$$

Trapezoid Method - Example

2 intervals

$$\int_{1.6}^{3.2} f(x)dx \approx \frac{h}{2} (f(1.6) + 2f(2.4) + f(3.2))$$

$$= 0.4(4.953 + 2.11.023 + 24.553)$$

$$= 20.621$$

Trapezoid Method - Example

4 intervals

$$\int_{1.6}^{3.2} f(x)dx \approx \frac{h}{2} (f(1.6) + 2f(2.0) + 2f(2.4) + 2f(2.8) + f(3.2))$$

$$= 0.2(4.953 + 14.778 + 22.046 + 32.890 + 24.553)$$

$$= 19.844$$

8 intervals

$$\int_{1.6}^{3.2} f(x)dx \approx \frac{h}{2} \Big(f(1.6) + 2f(1.8) + 2f(2.0) + 2f(2.2) + 2f(2.4) + 2f(2.6) + 2f(2.8) + 2f(3.0) + f(3.2) \Big)$$

$$= 0.1(4.953 + 12.100 + 14.778 + 18.050 + 22.046 + 26.928 + 32.890 + 40.172 + 24.553)$$

$$= 19.647$$

Romberg Integration

- Trapezoid method with Richardson's extrapolation
 - Use trapezoid method with step size h
 - Use trapezoid method with step size h/2
 - Use results of step sizes h and h/2, and extrapolate a more accurate solution

Richardson's Extrapolation

Given an order n numerical method, solutions Q_1 and Q_2 obtained with step sizes h_1 and h_2 , we can extrapolate a more accurate solution Q:

$$Q = \frac{\left(\frac{h_{1}}{h_{2}}\right)^{n} Q_{2} - Q_{1}}{\left(\frac{h_{1}}{h_{2}}\right)^{n} - 1}$$

Theory of Richardson's Extrapolation

Assume error is of order h^n for some numerical algorithm:

Let Q be true solution (which we don't know yet)

Let Q_1 be an approximation using h_1

Let Q_2 be an approximation using h_2

Theory of Richardson's Extrapolation (continued)

$$\frac{Q - Q_1}{h_1^n} = \frac{Q - Q_2}{h_2^n}$$

$$\frac{Q - Q_1}{h_1^n} = \frac{Q - Q_2}{h_2^n}$$

$$Q - Q_1 = \left(\frac{h_1}{h_2}\right)^n (Q - Q_2)$$

$$\left(\frac{h_1}{h_2}\right)^n Q - Q = \left(\frac{h_1}{h_2}\right)^n Q_2 - Q_1$$

$$Q = \frac{\left(\frac{h_{1}}{h_{2}}\right)^{n} Q_{2} - Q_{1}}{\left(\frac{h_{1}}{h_{2}}\right)^{n} - 1}$$

Romberg Integration Example

• Use Trapezoid method for $O(h^2)$ approximations using interval sizes of h, h/2, h/4 and h/8

Gaussian Quadrature

- Gaussian rules based on polynomial interpolation
- Nodes not evenly spaced locations of nodes chosen to maximize accuracy
- As before seeking

$$I(f) \approx \sum_{i=1}^{n} w_i f(x_i)$$

where choices of x_i and w_i are derived for optimality through nonlinear procedures

Deriving Gaussian Quadrature Rules

- Use method of undetermined coefficients, where both the weights AND the nodes are unknown.
- Example trying to derive a two-point rule

$$\int_{-1}^{1} f(x)dx \approx w_1 f(x_1) + w_2 f(x_2)$$

where x_i and w_i represent four unknowns. Therefore, we need four equations.

Gaussian Quadrature Rules

$$\int_{-1}^{1} f(x)dx \approx w_1 f(x_1) + w_2 f(x_2)$$

Use monomial basis functions

$$g_1(x) = 1$$
, $g_2(x) = x$,
 $g_3(x) = x^2$, $g_4(x) = x^3$

Because of the use of higher degree basis functions, a polynomial of degree 2n-1 will be integrated exactly with an n-point Gaussian quadrature rule

Form system of equations by forcing quadrature rule to integrate each of the basis functions exactly

$$\sum_{i=1}^{2} w_i g_1(x_i) = \int_{-1}^{1} g_1(x) dx$$

$$\sum_{i=1}^{2} w_i g_2(x_i) = \int_{-1}^{1} g_2(x) dx$$

$$\sum_{i=1}^{2} w_i g_3(x_i) = \int_{-1}^{1} g_3(x) dx$$

$$\sum_{i=1}^{2} w_i g_4(x_i) = \int_{-1}^{1} g_4(x) dx$$

Gaussian Quadrature Rules

$$\sum_{i=1}^{2} w_i g_1(x_i) = \int_{-1}^{1} g_1(x) dx$$

$$\sum_{i=1}^{2} w_i g_2(x_i) = \int_{-1}^{1} g_2(x) dx$$

$$\sum_{i=1}^{2} w_i g_3(x_i) = \int_{-1}^{1} g_3(x) dx$$

$$\sum_{i=1}^{2} w_i g_4(x_i) = \int_{-1}^{1} g_4(x) dx$$

$$w_{1} \cdot 1 + w_{2} \cdot 1 = \int_{-1}^{1} 1 dx = x \Big|_{-1}^{1} = 1 + 1 = 2$$

$$w_{1}x_{1} + w_{2}x_{2} = \int_{-1}^{1} x dx = \frac{x^{2}}{2} \Big|_{-1}^{1} = \frac{1}{2} - \frac{1}{2} = 0$$

$$w_{1}x_{1}^{2} + w_{2}x_{2}^{2} = \int_{-1}^{1} x^{2} dx = \frac{x^{3}}{3} \Big|_{-1}^{1} = \frac{1}{3} + \frac{1}{3} = \frac{2}{3}$$

$$w_{1}x_{1}^{3} + w_{2}x_{2}^{3} = \int_{-1}^{1} x^{3} dx = \frac{x^{4}}{4} \Big|_{-1}^{1} = \frac{1}{4} - \frac{1}{4} = 0$$

$$w_1 + w_2 = 2$$

$$w_1 x_1 + w_2 x_2 = 0$$

$$w_1 x_1^2 + w_2 x_2^2 = \frac{2}{3}$$

$$w_1 x_1^3 + w_2 x_2^3 = 0$$

"One" solution

$$x_1 = -\frac{1}{\sqrt{3}}, \quad x_2 = \frac{1}{\sqrt{3}}$$

 $w_1 = 1, \quad w_2 = 1$

Gaussian Quadrature Rule

$$\int_{-1}^{1} f(x)dx \approx w_1 f(x_1) + w_2 f(x_2)$$

$$x_1 = -\frac{1}{\sqrt{3}}, \quad x_2 = \frac{1}{\sqrt{3}}$$

 $w_1 = 1, \quad w_2 = 1$

$$\int_{-1}^{1} f(x)dx \approx f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$$

Typically, we will need to transform general interval of integration [a, b], to a standard interval $[\alpha, \beta]$ (e.g. [-1, 1]) for which nodes and weights have been tabulated.

Interval Transformations

Given an integral

$$I(g) = \int_{a}^{b} g(x)dx$$

We want to apply a Gaussian quadrature rule of the form

$$\int_{\alpha}^{\beta} f(\xi) d\xi = \sum_{i=1}^{n} w_i f(\xi_i)$$

Therefore, we need a transformation between the two coordinate systems

$$I(g) = \int_{a}^{b} g(x)dx = \int_{\alpha}^{\beta} g(\chi(\xi))J(\xi)d\xi$$

where $\chi(\xi)$ is coordinate transformation

and
$$J(\xi) = \frac{dx}{d\xi} = \frac{d\chi(\xi)}{dx}$$
 is the "Jacobian"

Linear Coordinate Transformation

$$x = \chi(\xi) = \frac{(b-a)\xi + a\beta - b\alpha}{\beta - \alpha}$$
$$J(\xi) = \frac{dx}{d\xi} = \frac{d\chi(\xi)}{dx} = \frac{b-a}{\beta - \alpha}$$

Application of quadrature rule

$$I(g) = \int_{a}^{b} g(x)dx = \int_{\alpha}^{\beta} g(\chi(\xi))J(\xi)d\xi$$

$$= \int_{\alpha}^{\beta} g\left(\frac{(b-a)\xi + a\beta - b\alpha}{\beta - \alpha}\right)\left(\frac{b-a}{\beta - \alpha}\right)d\xi$$

$$= \frac{b-a}{\beta - \alpha}\int_{\alpha}^{\beta} g\left(\frac{(b-a)\xi + a\beta - b\alpha}{\beta - \alpha}\right)d\xi$$

$$\approx \frac{b-a}{\beta - \alpha}\sum_{i=1}^{n} w_{i}g\left(\frac{(b-a)\xi_{i} + a\beta - b\alpha}{\beta - \alpha}\right)$$

Gaussian Quadrature Example

Approximate with previously defined two-point rule

$$I(g) = \int\limits_0^1 e^{-x^2} dx$$

$$I(g) = \int_{0}^{1} e^{-x^{2}} dx$$

$$\int_{-1}^{1} f(x) dx \approx f(-\frac{1}{\sqrt{3}}) + f(\frac{1}{\sqrt{3}})$$

$$x = \chi(\xi) = \frac{(b-a)\xi + a\beta - b\alpha}{\beta - \alpha} = \frac{(1-0)\xi + 0 + 1}{1 - -1} = \frac{\xi + 1}{2}$$

$$Coordinate$$

$$J(\xi) = \frac{dx}{d\xi} = \frac{d\chi(\xi)}{dx} = \frac{1}{2}$$
Transforma

Transformation

$$I(g) \approx \frac{b-a}{\beta-\alpha} \sum_{i=1}^{n} w_{i} g \left(\frac{(b-a)\xi_{i} + a\beta - b\alpha}{\beta-\alpha} \right)$$

$$= \frac{1}{2} \left(e^{-\left(\frac{(-1/\sqrt{3})+1}{2}\right)^{2}} + e^{-\left(\frac{(1/\sqrt{3})+1}{2}\right)^{2}} \right)$$

$$\approx 0.746595$$

True solution

$$\int_{0}^{1} e^{-x^{2}} dx = 0.746824$$

Values for Gaussian Quadrature

- Weights and nodes for numerous *n*-point Gaussian quadrature rules have already been tabulated
- See handout

Multiple Integrals

Straightforward extension of one dimension case

$$\iint_{A} f(x, y) dA = \int_{a}^{b} \left(\int_{c}^{d} f(x, y) dy \right) dx = \int_{c}^{d} \left(\int_{a}^{b} f(x, y) dx \right) dy$$

where *A* is bounded by the lines x=a, x=b, y=c, and y=d.

$$\iint\limits_A f(x, y) dA \approx \sum_{j=1}^m v_j \sum_{i=1}^n w_i f(x_i, y_j)$$

Monte Carlo Methods

- For three or more dimensions, traditional quadrature methods become expensive
- Use of "random" techniques offers relatively inexpensive approach for approximating higher integrals

Monte Carlo Algorithm

- Generate random points within interval, Ω , of integration
- Evaluate the integrand at each random point
- Sum all of the integrand evaluations and divide by the number of evaluations, to get the *mean* function value
- Multiply this mean value by "size" of interval

Monte Carlo Algorithm

$$\int_{\Omega} f(a,b,...,z) d\Omega \approx \frac{\Omega}{n} \sum_{i=1}^{n} f(a_i,b_i,...,z_i)$$
 General *n*-dimensional form

- Error approximately $n^{-1/2}$
- Example to gain extra decimal place of accuracy, *n* must be increased by factor of 100
- Not competitive for one or two dimensions
- Convergence rate independent of number of dimensions!

1D Monte Carlo Example

1D Monte Carlo Formula

$$\int_{a}^{b} f(x)dx \approx \frac{b-a}{n} \sum_{i=1}^{n} f(x_i)$$

$$I(g) = \int_{0}^{1} e^{-x^{2}} dx \longrightarrow \int_{0}^{1} e^{-x^{2}} dx \approx \frac{1}{n} \sum_{i=1}^{n} e^{-x^{2}}$$

Octave script

```
# The function we're integrating
function val = f(x)
    val = exp(-x^2);
endfunction

MAXN = 100;

n = 0;
sum = 0;
while (n < MAXN)

# Generates random number
  # between 0 and 1
  x = rand;

sum = sum + f(x);

n++;
endwhile

result = sum/n</pre>
```

```
nSample Results100.688970.859720.723310.824311000.753500.741030.745320.7792910000.752310.748370.743380.74616100000.744380.744540.746350.74840
```

2D Monte Carlo Example

2D Monte Carlo Formula

$$\int_{a}^{b} \int_{c}^{d} f(x, y) dx dy \approx \frac{(b-a)(c-d)}{n} \sum_{i=1}^{n} f((x, y)_{i})$$

```
# The function we're integrating
             function val = f(x, y)
                 val = exp(-y*x^2);
             endfunction
            MAXN = 10000;
            n = 0;
             sum = 0;
Octave
            while (n < MAXN)
                # Generates random number
                  between 0 and 1
                x = rand;
               y = rand;
               sum = sum + f(x,y);
               n++;
             endwhile
```

result = sum/n

script

```
I(g) = \int \int e^{-x^2 y} dx
\iint_{0}^{1} e^{-x^{2}y} dxdy \approx \frac{1}{n} \sum_{i=1}^{n} e^{-x^{2}y}
```

```
Sample Results
              0.82103
10
      0.88563
                       0.88990
                                0.86539
100
      0.85712 0.87623
                       0.88007
                                0.87531
1000
      0.86726
              0.85909
                       0.86455
                                0.86057
10000 0.86232
              0.85982
                       0.86063
                                0.86130
```

4D Monte Carlo Example

$$\int_{a}^{b} \int_{c}^{d} \int_{e}^{h} f(w, x, y, z) dw dx dy dz \approx$$

$$\frac{(b-a)(d-c)(f-e)(h-g)}{n} \sum_{i=1}^{n} f((w, x, y, z)_{i})$$

```
# The function we're integrating
function val = f(w, x, y, z)
    val = exp(-y*w*z*x^2);
endfunction

MAXN = 100;
n = 0;
```

Octave script

```
endfunction

MAXN = 100;

n = 0;
sum = 0;
while (n < MAXN)

# Generates random number
# between 0 and 1
w = rand;
x = rand;
y = rand;
z = rand;
sum = sum + f(w,x,y,z);
n++;
endwhile

result = sum/n</pre>
```

$$I(g) = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} e^{-wx^{2}yz} dw dx dy dz$$

$$\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} e^{-wx^{2}yz} dw dx dy dz \approx \frac{1}{n} \sum_{i=1}^{n} e^{-wx^{2}yz}$$

n	Sample Results			
10	0.97300	0.99244	0.97744	0.98583
100	0.96397	0.95508	0.95703	0.95573
1000	0.96288	0.96175	0.96482	0.96202
10000	0.96113	0.96192	0.96253	0.96230