Romberg Integration

By making use of two successive applications of the trapezoidal rule in which the step size $h=(b-a) / n$ is progressively decreased, we can get a numerical integration algorithm with $O\left(h^{4}\right)$ truncation error rather than $O\left(h^{2}\right)$. To see how this is done, note that the true value of the integral can be written as

$$
\begin{equation*}
I=I\left(h_{1}\right)+E\left(h_{1}\right)=I\left(h_{2}\right)+E\left(h_{2}\right), \tag{1}
\end{equation*}
$$

where $I\left(h_{1}\right)$ and $E\left(h_{1}\right)$ represent, respectively, the estimate and error after the first application of the trapezoidal rule with step size h_{1}, and $I\left(h_{2}\right)$ and $E\left(h_{2}\right)$ represent the estimate and error after the second application with step size h_{2}. Now, recall that

$$
E\left(h_{1}\right) \approx \frac{b-a}{12} h_{1}^{2} \bar{f}^{\prime \prime}
$$

and

$$
E\left(h_{2}\right) \approx \frac{b-a}{12} h_{2}^{2} \bar{f}^{\prime \prime}
$$

where we make the assumption that $\bar{f}^{\prime \prime}$ is approximately constant regardless of the step size. Hence, we have

$$
\frac{E\left(h_{1}\right)}{E\left(h_{2}\right)} \approx\left(\frac{h_{1}}{h_{2}}\right)^{2},
$$

Or

$$
E\left(h_{1}\right) \approx E\left(h_{2}\right)\left(\frac{h_{1}}{h_{2}}\right)^{2}
$$

Substituting this expression back into Equation (1), we get

$$
I\left(h_{1}\right)+E\left(h_{2}\right)\left(\frac{h_{1}}{h_{2}}\right)^{2}=I\left(h_{2}\right)+E\left(h_{2}\right)
$$

which can be solved for

$$
E\left(h_{2}\right) \approx \frac{I\left(h_{1}\right)-I\left(h_{2}\right)}{1-\left(h_{1} / h_{2}\right)^{2}}
$$

Finally, substituting into Equation (1) again, we get

$$
I=I\left(h_{2}\right)+E\left(h_{2}\right) \approx I\left(h_{2}\right)+\frac{I\left(h_{2}\right)-I\left(h_{1}\right)}{\left(h_{1} / h_{2}\right)^{2}-1} .
$$

This procedure is called Richardson's extrapolation. In the special case that the step size is reduced by a factor of 2 , Richardson's extrapolation becomes

$$
\begin{equation*}
I \approx \frac{4}{3} I\left(h_{2}\right)-\frac{1}{3} I\left(h_{1}\right) . \tag{2}
\end{equation*}
$$

It turns out that this approximation has a truncation error of order $O\left(h^{4}\right)$ rather than just $O\left(h^{2}\right)$.

Example: Consider the integral

$$
I=\int_{0}^{0.8}\left(0.2+25 x-200 x^{2}+675 x^{3}-900 x^{4}+400 x^{5}\right) d x
$$

Three successive applications of the trapezoidal rule gives the following table of results

n	h	$I(h)$	ε_{t}
1	0.8	0.1728	89.5
2	0.4	1.0688	34.9
4	0.2	1.4848	9.5

We can combine the first two estimates with step sizes $h=0.8$ and $h=0.4$ using Equation (2) to give a new estimate as follows:

$$
\begin{aligned}
I & \approx \frac{4}{3} I(0.4)-\frac{1}{3} I(0.8) \\
& =\frac{4}{3}(1.0688)-\frac{1}{3}(0.1728) \\
& \approx 1.367467 .
\end{aligned}
$$

This new estimate has a relative truncation error of $\varepsilon_{t}=16.6 \%$, which is considerably better than either of the estimates used to generate it. Similarly, we can combine the second two estimates to give another new estimate in the following manner:

$$
\begin{aligned}
I & \approx \frac{4}{3} I(0.2)-\frac{1}{3} I(0.4) \\
& =\frac{4}{3}(1.4848)-\frac{1}{3}(1.0688) \\
& \approx 1.623467 .
\end{aligned}
$$

This estimate has a relative truncation error of only $\varepsilon_{t}=1.0 \%$, which is again better than either of the estimates used to generate it.

Actually, we can continue this procedure by using a sequence of improved (or extrapolated) estimates rather than the sequence of original estimates based on the trapezoidal rule. For example, we can combine two $O\left(h^{4}\right)$ estimates to produce an $O\left(h^{6}\right)$ estimate using the formula

$$
I \approx \frac{16}{15} I_{m}-\frac{1}{15} I_{l},
$$

where I_{m} and I_{l} are the more and less accurate $O\left(h^{4}\right)$ estimates, respectively. Using the results of the previous example, this procedure gives

$$
I \approx \frac{16}{15}(1.623467)-\frac{1}{15} I_{l}(1.367467)=1.640533,
$$

which is correct to seven significant digits.
The iterative procedure described above is known as Romberg integration, and the general formula is given by

$$
I_{j, k}=\frac{4^{k-1} I_{j+1, k-1}-I_{j, k-1}}{4^{k-1}-1}
$$

where $I_{j+1, k-1}$ and $I_{j, k-1}$ represent the more and less accurate integrals, respectively, and $I_{j, k}$ represents the improved estimate. The index k represents the level of integration, where $k=1$ corresponds to the original trapezoidal-rule $O\left(h^{2}\right)$ estimates, $k=2$ corresponds to the $O\left(h^{4}\right)$ estimates, $k=3$ corresponds to the $O\left(h^{6}\right)$ estimates, etc. This Romberg integration procedure is illustrated below using the results from our previous example plus one additional step in the algorithm.

j	$I_{j, 1}$	$I_{j, 2}$	$I_{j, 3}$	$I_{j, 4}$
1	0.172800	1.367467	1.640533	1.640533
2	1.068800	1.623467	1.640533	
3	1.484800	1.639467		
4	1.600800			

Note that we can form estimates of the relative truncation error at the end of any sequence of estimates from the Romberg integration procedure using the following formula

$$
\varepsilon_{a}=\left|\frac{I_{1, k}-I_{1, k-1}}{I_{1, k}}\right|
$$

In general, Romberg integration gives better results than using a Simpson's rule with far fewer function evaluations. This not only saves computation time, but also reduces the accumulated round-off error (propagated error) in the final result.

