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Romberg Integration

By making use of two successive applications of the trapezoidal rule in
which the step size h b a n= −( )  is progressively decreased, we can get a

numerical integration algorithm with O h4( ) truncation error rather than

O h2( ).  To see how this is done, note that the true value of the integral can

be written as

I I h E h I h E h= ( ) + ( ) = ( ) + ( )1 1 2 2 , (1)

where I h1( ) and E h1( ) represent, respectively, the estimate and error after
the first application of the trapezoidal rule with step size h1, and I h2( ) and
E h2( ) represent the estimate and error after the second application with
step size h2.  Now, recall that
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where we make the assumption that ′′f  is approximately constant
regardless of the step size.  Hence, we have
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Substituting this expression back into Equation (1), we get

I h E h
h

h
I h E h1 2

1

2

2

2 2( ) + ( )





= ( ) + ( ),

which can be solved for
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Finally, substituting into Equation (1) again, we get
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This procedure is called Richardson’s extrapolation.  In the special case
that the step size is reduced by a factor of 2, Richardson’s extrapolation
becomes

I I h I h≈ ( ) − ( )4
3

1
32 1 . (2)

It turns out that this approximation has a truncation error of order O h4( )
rather than just O h2( ).
Example: Consider the integral

I x x x x x dx= + − + − +( )∫ 0 2 25 200 675 900 4002 3 4 5
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Three successive applications of the trapezoidal rule gives the following
table of results

n h I h t( ) ε
1 0 8 0 1728 89 5

2 0 4 1 0688 34 9

4 0 2 1 4848 9 5

. . .

. . .

. . .

We can combine the first two estimates with step sizes h = 0 8.  and h = 0 4.
using Equation (2) to give a new estimate as follows:
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This new estimate has a relative truncation error of ε t =16 6. %, which is
considerably better than either of the estimates used to generate it.
Similarly, we can combine the second two estimates to give another new
estimate in the following manner:

I I I≈ ( ) − ( )

= ( ) − ( )
≈

4
3

0 2
1
3

0 4

4
3

1 4848
1
3

1 0688

1 623467

. .

. .

. .

This estimate has a relative truncation error of only ε t =1 0. %, which is
again better than either of the estimates used to generate it.
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Actually, we can continue this procedure by using a sequence of improved
(or extrapolated) estimates rather than the sequence of original estimates

based on the trapezoidal rule.  For example, we can combine two O h4( )
estimates to produce an O h6( ) estimate using the formula

I I Im l≈ −16
15
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15

,

where Im and Il  are the more and less accurate O h4( ) estimates,

respectively.  Using the results of the previous example, this procedure
gives

I Il≈ ( ) − ( ) =16
15
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1

15
1 367467 1 640533. . . ,

which is correct to seven significant digits.

The iterative procedure described above is known as Romberg integration,
and the general formula is given by
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where I j k+ −1 1,  and I j k, −1 represent the more and less accurate integrals,

respectively, and I j k,  represents the improved estimate.  The index k

represents the level of integration, where k =1 corresponds to the original

trapezoidal-rule O h2( ) estimates, k = 2 corresponds to the O h4( )
estimates, k = 3 corresponds to the O h6( ) estimates, etc.  This Romberg

integration procedure is illustrated below using the results from our
previous example plus one additional step in the algorithm.
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1 2 3 4

1 0 172800 1 367467 1 640533 1 640533

2 1 068800 1 623467 1 640533

3 1 484800 1 639467

4 1 600800

Note that we can form estimates of the relative truncation error at the end
of any sequence of estimates from the Romberg integration procedure
using the following formula
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In general, Romberg integration gives better results than using a
Simpson’s rule with far fewer function evaluations.  This not only saves
computation time, but also reduces the accumulated round-off error
(propagated error) in the final result.


