False-Position (Regula Falsi) Method

The approach here is to estimate the root by finding the point at which a line drawn between x_{l} and x_{u} crosses the x axis. That is, you are performing linear interpolation between x_{l} and x_{u} to find the approximate root. Like the bisection method, the false-position method will always converge, and generally it will converge faster than the bisection method. Unfortunately, this general rule is not always true, and sometimes the bisection method converges faster than the false-position method.
To get the update formula for the false-position method, recall that the equation for the line between x_{l} and x_{u} is given by

$$
y=f\left(x_{u}\right)+\frac{f\left(x_{l}\right)-f\left(x_{u}\right)}{x_{l}-x_{u}}\left(x-x_{u}\right)
$$

Hence, to find the intersection of this line with the x axis, we must solve the equation

$$
0=f\left(x_{u}\right)+\frac{f\left(x_{l}\right)-f\left(x_{u}\right)}{x_{l}-x_{u}}\left(x_{r}-x_{u}\right) .
$$

This leads directly to the update formula

$$
x_{r}=x_{u}-f\left(x_{u}\right) \frac{x_{l}-x_{u}}{f\left(x_{l}\right)-f\left(x_{u}\right)}
$$

for the false-position method. The points x_{l} and x_{u} are updated using the same rule used for the bisection method.

