
ESTIMATIONESTIMATION  
 
 

1 INTRODUCTION 
 
Estimation is the statistical process of finding an approximate value for a 

population parameter. A population parameter is a characteristic of the 
distribution of a population such as the population mean, the population variance 
or population proportion. When no information is available on the parameter 
under investigation, a sample has to be selected from the population in order to 
obtain some idea of the value of this parameter. Obviously, we are assuming that 
a census would be not only impractical but also impossible, given that the 
population size is of infinite magnitude. The sampling method to be adopted 
depends on the structure of the population and the sample is to be chosen so as to 
be as unbiased as possible. It should contain all, if not most of, the characteristics 
of its parent population. It has to be mentioned that it is very hard to select the 
perfect sample, as it is impossible to eliminate sampling errors completely.   

 
It is therefore evident that a sample statistic will always deviate from its 

corresponding parameter. A sample statistic is any function of observed data, 
especially used to estimate a parameter – for example, the sample mean and the 
sample variance. There are two ways of estimating a population parameter: point 
and interval estimation. 

 
 

2 PROPERTIES OF GOOD ESTIMATORS 
 

A point estimator is a single-valued sample statistic which is used to 
approximate a population parameter. A question of interest is: which statistic 
should one use to estimate a parameter?  

 
For example, suppose we want to estimate the population mean μ . Should 

we use the sample mean x , the median or the mode? The solution is to pick the 
statistic that tends to produce an estimate closest to the true value. This can be 
expected to occur if the estimator possesses four properties which we will discuss 
in terms of population and sample means. 

 
 

2.1 Unbiasedness 

 
An estimator is said to be unbiased for the parameter estimated if it is 

‘centered at the right spot’. Mathematically, the average value of the estimator 
should be equal to the parameter that it is estimating. In mathematical notation, if 
the sample statistic T is an unbiased estimator of the population parameter θ , then 
E[T] = θ . Many estimators are asymptotically unbiased in the sense that the 
biases reduce to practically insignificant values (close to zero) when n becomes 
sufficiently large. The estimator , the sample variance, is such an example, as 
will be seen later.  
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2.2 Consistency 
 

If an estimator approaches the parameter it is estimating as the sample 
size n increases, it is then said to be consistent. Stated more rigorously, an 
estimator is said to be consistent if, as n approaches infinity, the probability that it 
will differ from the parameter is not more than an arbitrary small constant. 

 
For instance, the sample mean is an unbiased estimator of μ , no matter 

what form the population distribution assumes, while the sample median is 
unbiased only if the distribution is symmetrical. 

 
In case of large samples, consistency is a desirable property for an 

estimator to possess. However, in small samples, consistency is of little 
importance unless the limit of the probability defining consistency is reached even 
with a relatively small size of the sample. 

 
 
2.3 Efficiency 
 

The concept of efficiency refers to the sampling variability of an estimator. 
If two competing estimators are both unbiased, the one with smaller variance (for 
a given sample size) is said to be relatively more efficient. Stated in a somewhat 
different language, estimator T is said to be more efficient estimator U if the 
variance of the first is less than that of the second. The smaller the variance of the 
estimator, the more concentrated is the distribution of the estimator around the 
parameter being estimated and, therefore, the better this estimator is. 

 
For example, if the population is symmetrically distributed, then both the 

sample mean and the sample median are consistent and unbiased estimators of μ . 
Yet the sample mean is better than the sample median as an estimator of μ  since 
it is more efficient. 

 
 
2.4 Sufficiency 
 

An estimator is said to be sufficient if it conveys as much information as is 
possible about the parameter which is contained in the sample. The significance 
of sufficiency lies in the fact that, if a sufficient estimator exists, it is absolutely 
unnecessary to consider any other estimator; a sufficient estimator ensures that all 
information a sample can furnish with respect to the estimation of a parameter is 
being utilised. 

 
Many methods have been devised for estimating parameters that may 

provide estimators satisfying these properties. The two most important methods 
are the least-squares (OLS) and the maximum likelihood (MLE). 
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3 POINT ESTIMATION 
  
In this course, we shall find the point estimators for the population mean 

μ , variance  and proportion p. The derivation of these estimators will require 
a basic knowledge of the properties of expectation and variance (read Sections 
4.2.1 and 4.2.2 below); the reader might even find these derivations quite 
mathematically intricate sometimes. 

2σ

 
 
3.1 Properties of expectation 
 

The expectation of a random variable is just its arithmetic mean or 
average. The expectation of X is denoted by  and defined by ][XE
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3.2 Properties of variance 
 

The variance of a random variable is a measure of its spread or 
dispersion. The variance of X is denoted by  and defined as ]var[X
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Given a constant c and random variables X and Y, then  
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3.3 Assumptions 
 
  During the coming derivations, the following assumptions will be made: 
 

1. The population variable is X where μ=][XE  and . 2]var[ σ=X
2. Each observation from the set { } is independently and 

identically distributed (i.i.d), that is, for any observation , 
nxxx ,,. 21

ix
μ=][ iXE  and  just like for the population variable. 2]var[ σ=iX

 
Note that these assumptions are extremely important and will have to be 
remembered during the derivations. 

 
 
3.4 Estimation of the population mean μ  
 

If we wish to have an idea of the value of the population mean μ , it is 
natural to select a sample and calculate the sample mean x . These values should 
not be differing by much if the sample is unbiased. Can we conclude that the 
population mean is very close to x ? Can we use x  as a substitution forμ  
whenever the latter is unknown? First, we must show that the sample mean is an 
unbiased estimator for the population mean by proving that E[ X ] =  μ .  

 

  From definition, 
n

x
x ∑= . We therefore find its expectation as follows: 
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We can thus conclude that x  is an unbiased point estimator of μ . In plain 

and simple English, it means that, whenever the population meanμ  is unknown, 
we may select a sample (as unbiased as possible), calculate its sample mean x and 
consider it as a worthy replacement for μ . 
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3.5 Estimation of the population variance  2σ
 

The sample variance seems to be an ideal candidate for being the point 
estimator of the population variance . It remains to be checked whether  is 
unbiased for . 

2s
2σ 2s

2σ
 
  From the chapter on Descriptive Statistics, we know that 
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The expectation of is derived as follows: 2s
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The right-hand side of the above will be split in order to find the 

expectation of each term. 
 
 Let us look at the first term: 
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Using the definition of variance (in terms of expectation, Section 4.3.2), 

we have 
[ ] [ ] [ ]( )22var iii XEXEX −=  so that 

[ ] [ ] [ ]( )22 var iii XEXXE +=  for any i. 
 
  Thus, [ ] [ ] [ ] [ ] 2222

3
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The second term can be simplified similarly, that is, using the definition of 
variance: 

 
   [ ] [ ] [ ]( ) [ ] 222 varvar μ+=+= XXEXXE  
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 The term [ ]Xvar  can further be simplified as follows: 
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since it was already assumed that the observations are i.i.d. 

 

Thus, [ ] ( )
n
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 so that [ ] [ ] 2
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 Combining Equations (I) and (II), we have 
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It is clear that  is a biased estimator of  since its expectation is not 

equal to . However, it is not very far from being unbiased given that (n – 1) 
and n would approximately equal if n were very large – this is what asymptotic 
unbiasedness is all about! 

2s 2σ
2σ

 
More interesting would then be to determine the statistic which is the 

unbiased estimator of . Using one of the laws of expectation (Section 4.3.1), 
we have, starting from 
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3.6 Estimation of the population proportion p 
 

We often want to know the proportion of individuals in a population 
which satisfies a certain characteristic. For example, it would be interesting to 
know the percentage of left-handed people in Mauritius or the proportion of 
books in a library which contain more than 500 pages. As usual, it will be 
assumed that the population is infinite so that   information may only be obtained 
by selecting a sample. The population proportion is denoted by p.   

 
In general, when we select individuals, they either satisfy or do not satisfy 

the characteristic under investigation. If it ever happens that an individual falls in 
both categories simultaneously (for example, someone ambidextrous), then that 
individual is automatically discarded for the sake of calculations.  It is thus quite 
natural to use the binomial distribution because each individual will either be 
labelled as ‘success’ or ‘failure’, depending on whether it satisfies the 
characteristic or not. If we want to have an idea of the value of p, we select a 
sample of size n and count the number, x, of individuals satisfying the required 
characteristic. It is obvious that a natural point estimate for p, usually denoted by 

, would be sp
n
x . 

 

For the reader who is unfamiliar with the binomial distribution (discrete), 
it is sufficient to know that if X is a binomial variable with parameters n and p, 
then and [ ] npXE = [ ] )1(var pnpX −= . These results will certainly help in the 
following derivation. 

 
  The expectation of the sample proportion is obtained as follows: 
 

    [ ] pnp
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Thus, the sample proportion is an unbiased estimator of the population 
proportion. 

 

   
We summarise our findings in the following table. 

 
 Parameter Sample statistic Unbiased estimator 

Mean μ  
n

x
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n
x∑=μ̂  

Variance 2σ  2
2
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n
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n
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Fig. 3.6 
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4 INTERVAL ESTIMATION 
 

This aspect of estimation is an attempt to find the lower and upper 
boundaries of an interval that may contain the parameter under investigation.  

 
The length of this interval depends on the confidence level as specified in 

the problem. The confidence level is the degree of certainty with which we can 
say that the interval will contain the parameter. It is given in the )1(100 α− % 
form, where α  is known as the significance level or the margin of error.  More 
formally, a 95% confidence interval would be defined as one that has a 
probability of 0.95 of containing the parameter.   

 
It has to be mentioned here that 0.95 is not the probability that the 

parameter lies in the interval. There is a subtle difference between these two 
statements in the sense that it is not the parameter which varies but the boundaries 
of the interval. 

 
Let us first become familiar with the above theory and notations by means 

of an example.  
 
 
Example Imagine that we wish to find an interval estimate for the population 

mean weight of people who are 45 years old in a given population. 
The first step would be to select a sample of reasonable size, as 
unbiased as possible, and find the point estimate of the population 
mean, that is, the sample mean. This point estimate will be a guideline 
to the construction of the interval, which also requires the confidence 
level. If the sample mean is, say, 57.2 kg, then the population mean 
should not be ‘very far’ from this figure, taking into consideration the 
fact that the sample is as unbiased as possible. To maximise the 
probability of being correct in our interval estimation, it is logical to 
place the sample mean in the middle of the interval. The obvious 
reason is that, if there did exist some sampling error during the 
sampling process, then any amount of deviation from the sample 
mean will still yield a true figure for the population mean which is 
contained in the interval (think about it very carefully).  Furthermore, 
it is clear that the greater the confidence level, the larger will be the 
interval since the margin of error has to be minimised.  

 
 

The logical argument given above can also be statistically explained – 
since we always select relatively large samples in order to obtain maximum 
information on the population parameter, we can make use of an extremely 
powerful theorem to support our argument.  
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4.1 The Central Limit Theorem 
 

If   are observations of a random sample of size n from any 
distribution with mean 

nxxx ,,. 21

μ  and variance , then, for large n, the distribution of 

the sample mean 

2σ

X  is approximately normal such that ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
n

NX
2

,~ σμ  where 

n
x

x ∑= . 

 
 
4.2 Construction of an interval 
 

We can thus make use of the normal distribution theory to show that the 
probability of being correct in our estimation is maximised whenever the interval 
is symmetric about the point estimate of the parameter. 

 
The following diagrams show two intervals of the same length but placed 

at different locations on the x-axis of a normal curve. It is obvious that maximum 
probability is achieved when the interval is placed in the centre of the distribution 
(LB and UB stand for the lower boundary and upper boundary of each interval 
respectively).  

 

UB LB 

 
 
 
 
 
 
 
 
 
 

Fig. 4.2.1 
 

UB LB 

 
 
 
 
 
 
 
 
 

 
Fig. 4.2.2 
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It is clear that the shaded area in Fig. 4.2.1 is larger than that of Fig. 4.2.2, 
hence justifying our choice of centering the interval on the point estimator. 
 
 Fig. 4.2.3 below is an overall view of a confidence interval. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Confidence 
interval

UB LB 

2
α  

2
α  

Confidence 
level

E E 

Fig. 4.2.3 
 
 

The quantity E is just half of the length of the confidence interval. To 
obtain the respective values of the lower and upper boundaries, it suffices to 
evaluate E and, in turn, subtract it from, and add it to, the value of the point 
estimate (since the boundaries are equidistant to the centre of the distribution). 
 
 
 The procedure for interval calculation is as follows: 
 

1. Given the confidence level, we subtract it from 1 and divide by two to 
obtain the half of the significance level. 

2. Use this new value to get its corresponding z-value from the standard 
normal table – this is the number of standard deviations between any 
boundary and the centre. 

3. Calculate the value of one standard deviation of the estimator. 
4. Multiply the standard deviation by the z-value in order to obtain E. 
5. The confidence interval will thus be 

 
(Point Estimate – E, Point Estimate + E) 

 
This procedure will be used for calculating confidence intervals for both 

population means and proportions. The major differences will just be the point 
estimates and their standard deviations. 
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4.3 Estimation of the population mean μ   
 

When finding an interval estimate for the population mean μ , we should 
first select a sample and determine the value of the sample mean or point estimate 
x . From the Central Limit Theorem, the standard deviation for x is 

n
σ . 

However, if the population standard deviation σ  is unknown, we have to replace 
it by σ̂ , its unbiased estimate. We then follow the procedure as given in the 
previous section. This is illustrated by the example below. 

 
 Example 
 

A random sample of 250 adult men undergoing a routine medical 
inspection had their height (x cm) measured to the nearest centimetre and the 
following data were obtained: ∑ = 43205x , ∑ = 74691072x . Calculate 
unbiased estimates for the population mean and variance and hence a 99% 
symmetric confidence interval for the population mean. 

 
 Solution 
 
  We use the following information: 

 n = 250, ∑ = 43205x , ∑ = 74691072x . 
 
  The unbiased estimate for the population mean is 

82.172
250

43205
=== ∑

n
x

x  

 
  The unbiased estimate for the population variance is 
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7469107
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⎜⎜
⎝

⎛
−⎟

⎠
⎞

⎜
⎝
⎛

−
=

−
∑ x

n
x

n
n

n
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Since the confidence level is 99%, half the significance level is 

0.005, which gives us a z-value of 2.576 from the standard normal table. 
 

Thus, 51.0
250

)7144.9)(576.2(ˆ
===

n
zE σ  (2 decimal places, that is, the 

same degree of accuracy of the sample mean). 
   
  A 99% confidence interval for the population mean is therefore 
 

51.082.17251.082.172 +<<− μ , 
 

33.17331.172 <<⇒ μ . 
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4.4 Estimation of the population proportion p 
 

As has been proven in Section 3.6, the unbiased estimator of the 

population proportion p is the sample proportion 
n
x . Given that the binomial 

distribution is used to determine the unbiasedness of the sample proportion, we 
use the same distribution to find its variance (or standard deviation). We know 

that if X is a binomial variable, )1(]var[ pnpX −= . Thus, the variance of 
n
x  

would be 
n

pp
n

pnpX
nn

X )1()1(]var[1var 22

−
=

−
==⎥⎦

⎤
⎢⎣
⎡ .  

 

But then again, we ask ourselves the question: ‘How can we use the value 

of p in the formula for the variance of 
n
x  if we are precisely looking for a 

confidence interval for p?’ The answer is simple – whenever p is unknown, we 

replace it by its unbiased estimator! Hence, the variance of , that is,p̂
n
x , will be 

n
pp )ˆ1(ˆ −  or its standard deviation is 

n
pp )ˆ1(ˆ − . Let us now calculate the 

confidence interval for a population proportion by means of an example. 
 

 Example 
 

A survey was carried out to investigate the proportion of people who are 
left-handed in a population. To that effect, a sample of 1000 people revealed that 
only 115 of them were left-handed. Calculate 95% confidence limits for the 
population proportion of left-handed people. 

 
 Solution 
 

  We use the following information: 
    n = 1000, x = 115. 

  The sample proportion, p , is thus ˆ 115.0
1000
115

=  

Since the confidence level is 95%, half the significance level is 0.025, 
which gives us a z-value of 1.96 from the standard normal table. 

 

Thus, 020.0
1000

)885.0)(115.0()96.1()ˆ1(ˆ
==

−
=

n
ppzE  (3 decimal 

places, that is, the same degree of accuracy of the sample proportion). 
   
  A 99% confidence interval for the population mean is therefore  
 

020.0115.0020.0115.0 +<<− p , 
 

135.0095.0 <<⇒ p . 
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