Properties of expectation

The expectation of a random variable is just its arithmetic mean or average. The expectation of X is denoted by $E[X]$ and defined by

$$
E[X]=\sum x P[X=x]
$$

Given a constant c and random variables X and Y, then

1. $E[c]=c$
2. $E[c X]=c E[X]$
3. $E[X \pm Y]=E[X] \pm E[Y]$

Note 1. $E[X Y] \neq E[X] \times E[Y]$ except if X and Y are independent.
2. $E\left[\frac{X}{Y}\right] \neq \frac{E[X]}{E[Y]}$

Properties of variance

The variance of a random variable is a measure of its spread or dispersion. The variance of X is denoted by $\operatorname{var}[X]$ and defined as

$$
\operatorname{var}[X]=E\left[X^{2}\right]-(E[X])^{2}
$$

Given a constant c and random variables X and Y, then

1. $\operatorname{var}[c]=0$
2. $\operatorname{var}[c X]=c^{2} \operatorname{var}[X]$
3. $\operatorname{var}[X \pm Y]=E=\operatorname{var}[X]+\operatorname{var}[Y]$ only if X and Y are independent.

Note 1. $\quad \operatorname{var}[X Y] \neq \operatorname{var}[X] \times \operatorname{var}[Y]$
2. $\operatorname{var}\left[\frac{X}{Y}\right] \neq \frac{\operatorname{var}[X]}{\operatorname{var}[Y]}$

