
 CCOORRRREELLAATTIIOONN  AANNAALLYYSSIISS  
 
 

Correlation is another way of assessing the relationship between variables. 
To be more precise, it measures the extent of correspondence between the 
ordering of two random variables. There is a large amount of resemblance 
between regression and correlation but for their methods of interpretation of the 
relationship. For example, a scatter diagram is of tremendous help when trying to 
describe the type of relationship existing between two variables.  

 
 

1 Measuring correlation 
 

We make use of the linear product-moment correlation coefficient, also 
known as Pearson’s correlation coefficient, to express the strength of the 
relationship. This coefficient is generally used when variables are of quantitative 
nature, that is, ratio or interval scale variables.  

 
Pearson’s correlation coefficient is denoted by r and is defined by 
 

   
( ){ } ( ){ }∑ ∑∑ ∑
∑ ∑ ∑

−−

−
=

2222 yynxxn

yxxyn
r  

 
The value of r always lies between –1 and 1 inclusive, that is, 11 ≤≤− r . 

If Y increases when X increases, we say that there is positive or direct correlation 
between them. However, if Y decreases when X increases (or vice versa), then we 
say that they are negatively or inversely correlated. The reader must have noticed 
that direct and inverse are terms that are used in the context of variation or 
proportionality.  

 
  
2 Interpretation of the correlation coefficient 
 

The extreme values of r, that is, when r = ±1, indicate that there is perfect 
(positive or negative) correlation between X and Y. However, if r is 0, we say that 
there is no or zero correlation.  

 
 Note 
 

When r = 0, we may not assert that there is no correlation at all between X 
and Y. Pearson’s correlation coefficient is meant to measure linear relationship 
only. It should not be used in the case of non-linear relationships since it will 
obviously lead to an erroneous interpretation. 

 



The remaining values, falling in subintervals of [–1, 1], describe the 
relationship in terms of its strength. Fig. 2.1 below may be used as a guideline as 
to what adjective should be used for the values of r obtained after calculation to 
describe the relationship. 
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Fig. 2.1  Interpretation of correlation coefficient 
 
 

Note that Fig 2.1 is only to be used as a guideline. There are no set values that 
demarcate, for example, moderate from strong correlation. 

 
We observe that the strength of the relationship between X and Y is the 

same whether r = 0.85 or – 0.85. The only difference is that the there is direct 
correlation in the first case and inverse correlation in the second. We should bear 
in mind that r is the linear correlation coefficient and that, as mentioned earlier, 
its value can be wrongly interpreted whenever the relationship between X and Y is 
non-linear. That is the reason why we should have a look at a scatter diagram of 
points (x, y) and verify whether the relationship is, for example, of quadratic, 
logarithmic, exponential or trigonometric (briefly, non-linear) nature. 

 



If r = 0, we should not jump to the conclusion that there is no correlation 
at all between X and Y. Consider the case where there is perfect (but unsuspected) 
non-linear correlation between the two variables, say, related by the equation 

2XY = (see Fig. 2.2 below). Taking an initial set of points (–3, 9), (–2, 4), (–1, 
1), (0, 0), (1, 1), (2, 4) and (3, 9), then the reader may easily verify that both ∑ x  
and  are equal to zero. Consequently, r = 0 (check the formula for r in 
Section 9.1). We deduce that the linear product-moment correlation coefficient 
cannot be used to interpret the strength of a non-linear relationship. 
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       Fig. 2.2  Perfect non-linear relationship 
 
 

With practice and experience, it is even possible to know approximately 
the value of r by inspection of a scatter diagram. The location (amount of 
scattering) of the points with respect to the least-squares regression line indicates 
the strength of the relationship between the variables. The more scattered the 
points are, the weaker is the relationship and the closer is the value of r to zero. 

 
The sign of r is always the same as that of (the gradient) b in the 

regression equation . Fig. 2.3 below shows how we can deduce the 
value of r to a certain degree of accuracy from a scatter diagram. 

bXaY +=ˆ

 
 

Note If the variables were qualitative in nature, that is, nominal or ordinal, then 
it would be advisable to use a non-parametric method of determining the 
correlation coefficient, namely, Spearman’s (not included in this course). 
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 Y is independent of X, that 

is, Y assumes the same 
value irrespective of X. 

X and Y have a non-linear 
relationship.  

 
 
 

Fig. 2.3  Using scattering diagrams to determine r approximately 
 

 



Example 
 
The yield of a particular crop on a farm is thought to depend principally on 

the amount of rainfall in the growing season. The values of the yield Y, in tonnes 
per acre, and the rainfall X, in centimetres, for seven successive years are given in 
the table below. 

 
Rainfall (cm) 12.3 13.7 14.5 11.2 13.2 14.1 12.0 
Yield (tonnes per acre) 6.25 8.02 8.42 5.27 7.21 8.71 5.68 

 
Calculate the linear correlation coefficient and interpret your result.  

 
 
 Solution 
 

We first summarise the data from the above table as follows: 
 
 ∑    ∑    = 91x = 72.11912x ∑ = 006.654xy    ∑ = 56.49y     ∑ = 1628.3622y
 
 Pearson’s correlation coefficient is calculated as 
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Hence, there is a very strong direct correlation between rainfall and yield. 

The relationship between these variables is most probably linear. 
 
  
3 Causality 
  

Causality, also known as causation, is defined as a cause-effect 
relationship between two variables. A significant correlation does not necessarily 
indicate causality but rather a common linkage in a sequence of events. One type 
of significant correlation situation is when both variables are influenced by a 
common cause and therefore are correlated with each other.  

 
For example, individuals with a higher level of income have both higher 

levels of savings and spending. We might find that there is a positive correlation 
between level of savings and level of spending but this does not mean that one 
variable causes the other. We should mention the very interesting case where two 
related variables are separated by several steps in a cause-effect chain of events. 
Fig. 3.1 illustrates this example. 

 
 
 



 
 
 

Warm and humid air

Breeding of 
mosquitoes

Existence of 
mosquitoes in 

an area 

Transportation of 
malaria 

microorganisms by 
mosquitoes

Incidence of malaria

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.1  Correlation does not imply causality 
 
 

Thus, the existence of warm and humid climatic conditions is not itself the 
cause of malaria. 

 
 
4 Spurious correlation 
 

Spurious correlation occurs between two variables that are supposed to be 
mutually independent. It must be conceded that the correlation coefficient can be 
readily calculated for any given set of paired data, the names of the variables 
being totally irrelevant. 

 
  We may think about the variables X and Y being respectively given by 
 
 

X = “number of bags of potatoes sold daily at the Quatre-Bornes market” 
Y = “number of accidents daily in the United States of America” 

 
 

With a given set of data, we may well find that the correlation between X and Y is 
highly significant (for example, 0.89). But does that mean that these two variables 
are strongly correlated? Certainly not! Not even through the longest and most 
complex cause-effect chain. That is what spurious correlation is all about. 

 
 
 



5 Coefficient of determination 
 

The coefficient of determination is much more useful than the correlation 
coefficient in the sense that it gives a more plausible statistical explanation of the 
relationship between two variables X and Y. It is denoted by r2 and is simply the 
square of the correlation coefficient. While the correlation coefficient only 
describes the strength of the relationship in terms of a carefully chosen adjective, 
the coefficient of determination gives the variability in Y explained by the 
variability in X. 

 
For instance, although r = 0.8 (high positive correlation), r2 is only 0.64. 

We say that the variability in X account for 64% of the variability in Y. In terms of 
regression, it simply means that, apart from the predictor X, there are other factors 
which also influence the response variable Y (the remaining 36%) but which have 
not been considered in the analysis. 

 
The following example should help the reader to have a better 

understanding of this concept.  
 

Example  
 
An investigation was carried out in order to find the correlation between the 
marks obtained by students in July mock exams and November final exams. The 
main objective of this investigation was to determine the degree of predictability 
of mock exam marks. A Pearson’s correlation coefficient of 0.72 was obtained 
and it was concluded that the two sets of marks were significantly correlated. The 
result meant that mock exam marks could be used to predict final exam marks to 
a reasonable extent.  
 

 However, the coefficient of determination, 0.52, revealed that mock exam marks 
explained only 52% of the variability in final exam marks. Thus, a simple 
regression model was inadequate since it did not include enough predictor 
variables, that is, ‘mock exam marks’ is not enough to predict ‘final exam marks’ 
accurately. 
 

 The model could be improved by adding a few more significant predictors like 
 
1. Attendance rate 
2. Number of hours of study 
3. Number of hours of sleep 
4. Number of hours of leisure 

    
The adequacy of this new model (multiple linear regression) can be checked by 
running it in SPSS (or any other statistical software). If the abovementioned 
predictors do influence (positively or negatively) ‘final exam marks’ to the 
slightest extent, the value of the coefficient of determination will increase. 
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