
PROBABILITY THEORY 
 
 
                    In the world of Statistics, the word that can most suitably replace probability 
would be ' chance '. Probability can be considered as a measure of  likelihood of an event 
occurring. There are two ways of assigning numerical values to probability : the classical 
approach and empirical method. 
 
                   Before probing into the core of this topic, it will be most appropriate to, first 
of all, make the reader familiar with the different notations that will be used throughout 
it. It must be mentioned, here, that probability theory is quite closely linked to set theory. 
It has, therefore, been considered necessary to remind the reader of the equivalence of the 
terms of these two concepts. 
 
 
Notation 
 
S                 -  sample space (universal set) 
A, B, C, …  -  events defined on the sample space S ( subsets of the universal set) 
n(A)            -  number of outcomes favourable to A (number of elements in set A) 
p(A)            -  probability of event A occurring 
φ                 -  null event (empty set) 

A  or A′      -  A complement, that is, the event which automatically occurs in the absence  
                       of event A ( the set of all elements not belonging to set A) 
∪                -  union 
∩                -  intersection 
⊂                -  '  is a subset of  ' 
⊆                -  '  is a subset of  ' or  ' is equal to ' 
 
 
 
Classical method of obtaining probability 
 
 
                   Given an event A defined on a sample space S, the probability of A occurring, 
denoted by p(A), is defined as 
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It should be clear that n(S) represents the total number of outcomes. 
 
                   In fact, the classical definition of probability applies when the outcomes of an 
experiment are equally likely to occur. When deriving mathematical rules for probability, 
it is useful to consider the classical definition of probability. 
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Example 
 
A six-sided unbiased (ordinary fair) die is tossed. What is the probability of obtaining a 
multiple of 3 ? 
 
Solution 
 
The sample space S = {1,2,3,4,5,6}  ⇒  n(S) = 6; 
Let A = ' multiple of 3 ' 
Therefore, A = {3,6} ⇒  n(A) = 2; 

It follows that  p(A) = .
3
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Empirical method of obtaining probability 
 
                   This definition of probability lays emphasis on a much more practical rather 
than theoretical approach. Here, probability is determined as a result of a large number of 
repeated experiments under presumably identical conditions. 
 
                   For example, let us try to find out whether a coin is unbiased. The most 
natural thing to do is to toss it a certain number of times  n  and record the number of  
'heads', n(H), or number of 'tails' , n(T)). A ratio n(H) : n(T)  approximately equal to 1 : 1 
would suggest that the coin is probably unbiased. On the other hand, if the coin is tossed 
20 times, for example, and 15 heads are recorded, it cannot be immediately concluded 
that the coin is biased. This is because the value of  n  is too small  to allow any hasty 

decision. It is expected that, as we increase the number of tosses, the value of 
n

Hn )(
 

will tend to the real value of  p(H) for the coin. 
 
                   Let us consider the following table, which gives the results of tosses of a coin 
generated at random by a computer. 
 
 
 
 
 
 
 
 

n 10000 50000 100000 500000 1000000 5000000 

n(H) 5521 27530 54997 274895 550020 2750050 

p(H) 0.5521 0.5506 0.54997 0.54979 0.55002  0.55001 
 
 
 
 
 

n 10 50 100 500 1000 5000 

n(H) 7 33 62 289 572 2797 

p(H) 0.7 0.66 0.62 0.578 0.572   0.5594 
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                   It can be noted that  p(H)  approaches 0.55 as the number of tosses increases 
indefinitely. We can, within some security margin, conclude that the coin is slightly 
biased towards 'heads'. 
 
Subjective method of obtaining probability 
 
                   There are cases where all outcomes are not equally likely to occur and also 
where a good estimate of probability cannot be obtained because an experiment cannot be 
repeated under identical conditions. An example would be to calculate the probability 
that a shop will sell exactly 10 television sets on a particular day. In those cases, we are 
forced to form a subjective probability, based on past experience, records, expert opinion 
or other factors. This method obviously has a very large margin of error but it is 
sometimes the only method available. 
 
 
 
AXIOMS OF PROBABILITY 
 
1. For any sample space S, p(S) = 1. 
2. For any given event A defined on a sample space S, 1)(0 ≤≤ Ap . 
3. For any two mutually exclusive events A and B defined on a sample space S, 

)()()( BpApBAp +=∪  
 
Note 
Two events are said to be mutually exclusive if they have no intersection. 
 
 
Proofs 
 
1. p(S) = 1. 
 
                   A probability of 1 is known as certainty. It is obvious that the outcome of an 
experiment must belong to the sample space corresponding to that particular experiment. 
Hence, the sample space occurs all the time with 100% probability. If not, it would not 
have been well-defined ! 
 
2. 1)(0 ≤≤ Ap  
 
                   This proof consists of two parts : 
 

(i) 0)( ≥Ap  

From the classical definition, 
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Ap = . Since n(A) and n(S) are both 

natural numbers, it goes without saying that 0)( ≥Ap .  
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(ii) 1)( ≤Ap  

 
Here, we know that SA ⊆ . Therefore, )()( SnAn ≤ . Dividing both sides of 
the inequality by n(S), we have the required result : 
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                                  1)( ≤⇒ Ap . 
We conclude that probability can only take on values between 0 and 1 
inclusive. 

 
3. )()()( BpApBAp +=∪       
 
                   This axiom can easily be proved by using a Venn diagram. 
 
                            S 
 

 
 
 
 
                   Let  n(A) = p and  n(B) = q.    
                   Thus, n(A) + n(B) = p + q  and also, qpBAn +=∪ )( . 
   
                 We can therefore write )()()( BnAnBAn +=∪  and, dividing both sides by         
n(S), we have 
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                                            )()()( BpApBAp +=∪⇒ . 
 
                  Now that we have proved the axioms, let us have a look at some further rules 
of probability. Most of them are derived from the axioms themselves. 
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Further rules of probability 
 
1. 0)( =φp . 
            
            There are two ways of proving the above : 
 

(i) 0
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(ii) Since S and φ  are complementary, they are also mutually exclusive. Using 
the third axiom of probability, we have 

)()()( φφ pSpSp +=∪  
            Since SS =∪φ , it follows that 

)()()( φpSpSp +=  
0)()()( =−=⇒ SpSpp φ  

 
2.     )(1)( ApAp −=′  
 
            We know that A and A′  are mutually exclusive. By the third axiom, 

)()()( ApApAAp ′+=′∪  
            Since SAA =′∪ , 

    )()()( ApApSp ′+=  
                                                      )()(1 ApAp ′+=⇒  from the first axiom and 

   )(1)( ApAp −=′ . 
 
3.         )()()( BApBApAp ′∩+∩=  
            (It can easily be checked that )()()( BAnBAnAn ′∩+∩= ). 
 
4.          De Morgan's rules. 
 

(i) )()( ′∪=′∩′ BApBAp  
(ii) )()( ′∩=′∪′ BApBAp  

 
5.         General addition rule for two events. 
 
     )()()()( BApBpApBAp ∩−+=∪  
 
             This rule will also be proven by the use of a Venn diagram. From the diagram          
             below,  n(A) = p + q,  n(B) = q + r  and =∩ )( BAn  q. 
             We have that  n(A) + n(B) rqpqrqqpBAn ++=−+++=∩− )()()( . 
             Also, rqpBAn ++=∪ )( . 
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                   Therefore, n(A) + n(B) )()( BAnBAn ∪=∩− . Dividing by n(S) on both 
sides, we obtain    

p(A) + p(B) )()( BApBAp ∪=∩− . 
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CONDITIONAL PROBABILITY 

 

 Conditional probability theory helps to calculate the probability of an event occurring 

given that another event has occurred. In a sense, it verifies whether an event A is independent of 

a second event B. We use conditional probability very often in solving basic statistical problems; 

if asked, for example, the probability of drawing two red balls from a bag containing 3 blue and 5 

red balls, we would find it very straightforward to reply 14
5

7
4

8
5 =× . However, there is a rich 

theoretical background behind this simple calculation, as will be seen later.  

 

Let us start with a real-life situation where the event A is defined as “Mauritius will 

produce 600 000 tonnes of sugar in 2004” and B is the event that “there will be a heavy cyclone 

during the year 2004”. It is obvious that both A and B have their individual probabilities of 

occurring but it should also be clear that the probability of A will change depending on whether B 

occurs, that is, a cyclone could definitely bring about a drastic decrease in the number of tonnes 

of sugar produced. This is a case of conditional probability. 

 

Notation  

 

( )BAP |  means “the probability that A occurs given that B has already occurred” 

[Remember that we are only calculating the probability that A occurs (nothing to do with B).] 

 

Definition 

( ) ( )
( )BP

BAPBAP ∩=|  

 

The above formula can be explained by means of the following Venn diagram. 

 

 

 

 

 

 

 

 
A B 

S 

A ∩ B 
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 If event B occurs, obviously its complement B′  cannot occur any more. Thus, if any 

subsequent event has to occur, it can only do so in B. Therefore, the initial sample space S has 

now been reduced to the new sample space B. Now, what is the probability of A occurring in B? 

The answer is clearly the part of A which also belongs to B, that is, A ∩ B (indicated by an arrow 

in the above diagram). 

 

 Hence, ( ) ( )
( )

( ) ( )
( ) ( )

( )
( )BP

BAP
SnBn

SnBAn
Bn

BAnBAP ∩=
÷

÷∩=∩=| . 

 

 It is worth noting that, sometimes, we do not have to solve a problem by strictly using 

theory so that a logical approach may also lead us to the solution more easily. Example 1 

illustrates both approaches to the same problem. 

 

Example 1 

 
 An ordinary fair (six-sided unbiased) die is tossed. If the score is even, what is the 

probability that it is also prime? 

 

Solution 

 
Method 1 (Theory) 

 

Let  A = “the score is even” and 

B = “the score is prime” 

 We wish to calculate ( )ABP | , that is, ( )
( )AP

ABP ∩ .  

The sample space of scores is S ={1, 2, 3, 4, 5, 6}. 

Note that A = {2, 4, 6}, B = {2, 3, 5} and A ∩ B = {2}. 

( )AP , the probability that the score is even, is 6
3 . 

( )BAP ∩ , the probability that the score is both even and prime, is 6
1 . 

Therefore, ( )
( )

( )
( ) 3

1

6
3
6
1

==∩
AP

ABP . 

 

Method 2 (Logic) 
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We know that the score is even so that any subsequent outcome must belong to the set {2, 4, 6}, 

which is the new sample space (read discussion above). 

The only prime number in this set is 2 and the probability that it occurs is clearly 3
1 . 

(Short and sweet!) 

 

 

A problem on conditional probability can also be solved by means of a tree diagram as shown in 

Example 2 below. 

 

 

Example 2 

 

 A man goes to work on foot, by bus or by car with respective probabilities of 0.5, 0.2 and 

0.3 respectively. If he goes on foot, the probability that he arrives to work late is 0.4. If he goes 

by bus, the probability that he arrives to work late is 0.7 and if he goes by car, the probability that 

he arrives to work late is 0.5. Determine the probability that 

 

(a) he is late on a given day, 

(b) he travelled by bus given that he is late. 

 

[To avoid any confusion, you may assume that being exactly on time is the same as being early.] 

 

Solution 

 

Let  F = “man goes on foot” 

 B = “man travels by bus” 

 C = “man travels by car” 

 L = “man is late” 

 

Note that there is no need to define an event E, for example, where E = “man is early” since that 

event is simply the complement of “man is late”, hence, denoted by L′ . 
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The information can be illustrated by a tree diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) The probability of the man being late, irrespective of the means of transport used, is 

given by 

 

 ( )=LP ( ) ( ) ( ) ( ) ( ) ( )CLPCPBLPBPFLPFP ||| ++  

           = (0.5)(0.4) + (0.2)(0.7) + (0.3)(0.5) = 0.49 

 

 

(b) ( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )CLPCPBLPBPFLPFP

BLPBP
LP

LBPLBP
|||

||
++

=∩=  

    = 
7
2

49.0
14.0 = . (this could mean the contribution of bus in lateness) 

 

The next example shows the application of probability in the case of a contingency table. 

A contingency table is just a table of frequencies representing two factors in terms of their 

attributes. 

 

P(F) = 0.5 

P(B) = 0.2 

P(C) = 0.3 

( )FLP | = 0.4 

( )BLP | = 0.7 

( )CLP | = 0.5 

( )FLP |′ = 0.6 

( )BLP |′ = 0.3 

( )CLP |′ = 0.5 
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Example 3 

 

The following table shows the frequency distribution of grades obtained in Mathematics 

by students of different sections of a certain form in a secondary school. 

 

 A B C 

Form V Red 15 25 40 

Form V Blue 26 44 10 

 

If a student is chosen at random, find the probability that the student 

 

(a) obtained an A 

(b) is from Form V Blue 

(c) is from Form V Red and obtained a C 

(d) obtained an A given that he is from Form V Red 

(e) is from Form V Blue given that he obtained a B. 

 

Solution 

 

 We start by calculating the marginal and grand totals. 

 

 A B C Total 

Form V Red 15 25 40 80 

Form V Blue 26 44 10 80 

Total 41 69 50 160 

 

(a) P [student obtained an A] = 160
41 . 

(b) P [student is from Form V Blue] = 2
1

160
80 = . 

(c) P [student is from Form V Red and obtained a C] = 4
1

160
40 = . 

(d) P [student obtained an A given that he is from Form V Red] = 16
3

80
15 = . 

(e) P [student is from Form V Blue given that he obtained a B] = 69
44 . 
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Independence 

 

  Imagine that an event A is independent of another event B. It can be easily 

understood that the probability of A occurring will be unaffected by the fact that B has 

occurred or not. Thus, we simply conclude that 

 

( ) ( )APBAP =| . 

 

From definition, we obtain 

 

( )
( ) ( )AP
BP

BAP =∩  

 

so that ( ) ( ) ( )BPAPBAP =∩ . 

 

  The above result is known as the multiplicative rule for two independent events. 

Note that independent events are not mutually exclusive events! The difference is in fact very 

obvious: for mutually exclusive events, there is no intersection whereas independent events 

definitely do have an intersection (the above result says it all!) 

 

 

 

 

 


